Skip to main content

Inflammatory Consequences of High Stretch Lung Injury

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1998

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1998))

  • 190 Accesses

Abstract

After 30 years of extensive research, the acute respiratory distress syndrome (ARDS) remains a therapeutic challenge for critical care physicians [1]. Clinical management of patients with ARDS involves primarily supportive measures aimed at maintaining cellular and physiologic functions of the lung while the acute injury resolves. Among these measures, mechanical ventilation plays a pivotal role and has been the focus of thorough investigation. It has become increasingly evident that mechanical ventilation per se can create lung injury [2,3]. Ventilatory strategies are now directed toward achievement of acceptable gas exchange as well as the prevention of ventilator-induced lung injury [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kollef MH, Schuster DP (1995) The acute respiratory distress syndrome. N Engl J Med 332: 27–37

    Article  PubMed  CAS  Google Scholar 

  2. Dreyfuss D, Saumon G (1994) Ventilator-induced lung injury. In: Tobin MJ (ed) Principles and practice of mechanical ventilation. Mc Graw Hill, New York, pp 793–811

    Google Scholar 

  3. Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21: 131–143

    Article  PubMed  CAS  Google Scholar 

  4. Marini J J (1996) Evolving concepts in the ventilatory management of acute respiratory distress syndrome. Clin Chest Med 17: 555–575

    Article  PubMed  CAS  Google Scholar 

  5. Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273: 306–309

    Article  PubMed  CAS  Google Scholar 

  6. Montgomery AB, Stager MA, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132: 485–489

    PubMed  CAS  Google Scholar 

  7. Imai Y, Kawano T, Miyasaka K, Takata M, Imai T, Okuyama K (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150: 1550–1554

    PubMed  CAS  Google Scholar 

  8. Takata M, Abe J, Tanaka H, et al (1997) Intraalveolar expression of tumor necrosis factor alpha gene during conventional and high-frequency ventilation. Am J Respir Crit Care Med 156: 272–279

    PubMed  CAS  Google Scholar 

  9. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  10. Dreyfuss D, Soler P, Saumon G (1995) Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med 151: 1568–1575

    PubMed  CAS  Google Scholar 

  11. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203

    PubMed  CAS  Google Scholar 

  12. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    PubMed  CAS  Google Scholar 

  13. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    PubMed  CAS  Google Scholar 

  14. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    PubMed  CAS  Google Scholar 

  15. Slutsky AS (1994) Consensus conference on mechanical ventilation - Part I. Intensive Care Med 20: 64–79

    Article  PubMed  CAS  Google Scholar 

  16. Roupie E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–128

    PubMed  CAS  Google Scholar 

  17. Brunet F, Jeanbourquin D, Monchi M, et al (1995) Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan? Am J Respir Crit Care Med 152: 524–530

    PubMed  CAS  Google Scholar 

  18. Amato MB, Barbas CS, Medeiros DM, et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152: 1835–1846

    PubMed  CAS  Google Scholar 

  19. Amato MBP, Barbas CSV, Medeiros D, et al (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (Abst)

    Google Scholar 

  20. Donnelly TJ, Meade P, Jagels M, et al (1994) Cytokine, complement, and endotoxin profiles associated with the development of the adult respiratory distress syndrome after severe injury. Crit Care Med 22: 768–776

    Article  PubMed  CAS  Google Scholar 

  21. Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite A (1995) Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108: 1303–1314

    Article  PubMed  CAS  Google Scholar 

  22. Hamilton PP, Onayemi A, Smyth JA, et al (1983) Comparison of conventional and high-frequency ventilation: oxygenation and lung pathology. J Appl Physiol 55: 131–138

    PubMed  CAS  Google Scholar 

  23. Kawano T, Mori S, Cybulsky M, et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62: 27–33

    PubMed  CAS  Google Scholar 

  24. Sugiura M, McCulloch PR, Wren S, Dawson RH, Froese AB (1994) Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol 77: 1355–1365

    PubMed  CAS  Google Scholar 

  25. Sadoshima J, Izumo S (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59: 551–571

    Article  PubMed  CAS  Google Scholar 

  26. Vandenburgh HH (1992) Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol 262: R350–R355

    PubMed  CAS  Google Scholar 

  27. Rannels DE (1989) Role of physical forces in compensatory growth of the lung. Am J Physiol 257: L179–L189

    PubMed  CAS  Google Scholar 

  28. Mattana J, Sankaran RT, Singhal PC (1995) Repetitive mechanical strain suppresses macrophage uptake of immunoglobulin G complexes and enhances cyclic adenosine monophosphate synthesis. Am J Pathol 147: 529–540

    PubMed  CAS  Google Scholar 

  29. Watson PA (1991) Function follows form: generation of intracellular signals by cell deformation. FASEB J 5: 2013–2019

    PubMed  CAS  Google Scholar 

  30. Liu M, Xu J, Liu J, Kraw ME, Tanswell AK, Post M (1995) Mechanical strain-enhanced fetal lung cell proliferation is mediated by phospholipase C and D and protein kinase C. Am J Physiol 268: L729–L738

    PubMed  CAS  Google Scholar 

  31. Ranneis DE, Ranneis SR (1989) Influence of the extracellular matrix on type 2 cell differentiation. Chest 96: 165–173

    Article  Google Scholar 

  32. Waters CM (1996) Flow-induced modulation of the permeability of endothelial cells cultured on microcarrier beads. J Cell Physiol 168: 403–411

    Article  PubMed  CAS  Google Scholar 

  33. Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250: 1266–1269

    Article  PubMed  CAS  Google Scholar 

  34. Martin DK, Bootcov MR, Campbell TJ, French PW, Breit SN (1995) Human macrophages contain a stretch-sensitive potassium channel that is activated by adherence and cytokines. J Membr Biol 147: 305–315

    PubMed  CAS  Google Scholar 

  35. Sachs F (1991) Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem 104: 57–60

    Article  PubMed  CAS  Google Scholar 

  36. Demling RH (1993) Adult respiratory distress syndrome: current concepts. New Horizons 1: 388–401

    PubMed  CAS  Google Scholar 

  37. Matsuoka T, Kawano T, Miyasaka K (1994) Role of high-frequency ventilation in surfactant- depleted lung injury as measured by granulocytes. J Appl Physiol 76: 539–544

    PubMed  CAS  Google Scholar 

  38. Woo SW, Hedley-Whyte J (1972) Macrophage accumulation and pulmonary edema due to thoracotomy and lung over inflation. J Appl Physiol 33: 14–21

    PubMed  CAS  Google Scholar 

  39. Kitagawa Y, Van Eeden SF, Redenbach DM, et al (1997) Effect of mechanical deformation on structure and function of polymorphonuclear leukocytes. J Appl Physiol 82: 1397–1405

    Article  PubMed  CAS  Google Scholar 

  40. Downey GP (1997) Effect of mechanical deformation on structure and function of polymorphonuclear leukocytes. J Appl Physiol 82: 1395–1396

    PubMed  CAS  Google Scholar 

  41. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. Embo J 12: 1681–1692

    PubMed  CAS  Google Scholar 

  42. Nagase T, Fukuchi Y, Shimizu T, Matsuse T, Orimo H (1990) Reduction of 15-hydroxy-eicosatetraenoic acid (15-HETE) in tracheal fluid by high frequency oscillatory ventilation. Prostaglandins Leukot Essent Fatty Acids 40: 177–180

    Article  PubMed  CAS  Google Scholar 

  43. von Bethmann AV, Brasch F, Muller KM, Uhlig S (1996) Barotrauma induced cytokin- and eico- sanoid-release from the isolated perfused and ventilated mouse lung. Am J Respir Crit Care Med 153: A530 (Abst)

    Google Scholar 

  44. Taskar V, John J, Evander E, Robertson B, Jonson B (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med 155: 313–320

    PubMed  CAS  Google Scholar 

  45. Veldhuizen RA, Ito Y, Marcou J, Yao LJ, McCaig L, Lewis JF (1997) Effects of lung injury on pulmonary surfactant aggregate conversion in vivo and in vitro. Am J Physiol 272: L872–L878

    PubMed  CAS  Google Scholar 

  46. Veldhuizen RA, Marcou J, Yao LJ, McCaig L, Ito Y, Lewis JF (1996) Alveolar surfactant aggregate conversion in ventilated normal and injured rabbits. Am J Physiol 270: L152–L158

    PubMed  CAS  Google Scholar 

  47. Ito Y, Veldhuizen RA, Yao LJ, McCaig LA, Bartlett AJ, Lewis JF (1997) Ventilation strategies affect surfactant aggregate conversion in acute lung injury. Am J Respir Crit Care Med 155: 493–499

    PubMed  CAS  Google Scholar 

  48. Veldhuizen RA, McCaig LA, Akino T, Lewis JF (1995) Pulmonary surfactant subfractions in patients with the acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 1867–1871

    PubMed  CAS  Google Scholar 

  49. Froese AB, McCulloch PR, Sugiura M, Vaclavik S, Possmayer F, Moller F (1993) Optimizing alveolar expansion prolongs the effectiveness of exogenous surfactant therapy in the adult rabbit. Am Rev Respir Dis 148: 569–577

    Article  PubMed  CAS  Google Scholar 

  50. Pison U, Max M, Neuendank A, Weissbach S, Pietschmann S (1994) Host defence capacities of pulmonary surfactant: evidence for ‘non-surfactant’ functions of the surfactant system. Eur J Clin Invest 24: 586–599

    Article  PubMed  CAS  Google Scholar 

  51. Geertsma MF, Teeuw WL, Nibbering PH, Van Furth R (1994) Pulmonary surfactant inhibits activation of human monocytes by recombinant interferon-gamma. Immunology 82: 450–456

    PubMed  CAS  Google Scholar 

  52. Blau H, Riklis S, Van Iwaarden JF, McCormack FX, Kalina M (1997) Nitric oxide production by rat alveolar macrophages can be modulated in vitro by surfactant protein A. Am J Physiol 272: L1198–L1204

    PubMed  CAS  Google Scholar 

  53. Antal JM, Divis LT, Erzurum SC, Wiedemann HP, Thomassen MJ (1996) Surfactant suppresses NF-kappa B activation in human monocytic cells. Am J Respir Cell Mol Biol 14: 374–379

    PubMed  CAS  Google Scholar 

  54. Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73: 123–133

    PubMed  CAS  Google Scholar 

  55. Nahum A, Hoyt J, McKibben A, et al (1996) Effect of mechanical ventilation strategy on E. Coli pneumonia in dogs. Am J Respir Crit Care Med 153: A530 (Abst)

    Google Scholar 

  56. Fukushima R, Alexander JW, Gianotti L, Ogle CK (1994) Isolated pulmonary infection acts as a source of systemic tumor necrosis factor. Crit Care Med 22: 114 - 120

    PubMed  CAS  Google Scholar 

  57. Tutor JD, Mason CM, Dobard E, Beckerman RC, Summer WR, Nelson S (1994) Loss of compartmentalization of alveolar tumor necrosis factor after lung injury. Am J Respir Crit Care Med 149: 1107–1111

    PubMed  CAS  Google Scholar 

  58. Debs RJ, Fuchs HJ, Philip R, et al (1988) Lung-specific delivery of cytokines induces sustained pulmonary and systemic immunomodulation in rats. J Immunol 140: 3482–3488

    PubMed  CAS  Google Scholar 

  59. Vara E, Arias-Diaz J, Garcia C, Hernandez J, Balibrea JL (1996) TNF-alpha-induced inhibition of PC synthesis by human type II pneumocytes is sequentially mediated by PGE2 and NO. Am J Physiol 271: L359–L365

    PubMed  CAS  Google Scholar 

  60. Bachurski CJ, Pryhuber GS, Glasser SW, Kelly SE, Whitsett JA (1995) Tumor necrosis factor- alpha inhibits surfactant protein C gene transcription. J Biol Chem 270: 19402–19407

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiche, JD. (1998). Inflammatory Consequences of High Stretch Lung Injury. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1998. Yearbook of Intensive Care and Emergency Medicine, vol 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72038-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72038-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63798-1

  • Online ISBN: 978-3-642-72038-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics