Skip to main content

Potential Functions and Molecular Evolution

  • Conference paper
From Chemical to Biological Organization

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 39))

Abstract

Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Fisher: The Genetical Theory of Natural Selection (Oxford University Press, Oxford 1930) and 2nd revised ed. (Dover Publications, New York 1958)

    MATH  Google Scholar 

  2. J.B.S. Haldane: The Causes of Evolution (Harper & Row, New York 1932)

    Google Scholar 

  3. S. Wright: Evolution and the Genetics of Populations, Vols. I–IV (The University of Chicago Press, Chicago (1968, 1969, 1977 and 1978)

    Google Scholar 

  4. C. Darwin: The Origin of Species (Everyman’s Library, Vol. 811, Dent, London 1967). The famous catchphrase of “survival of the fittest” is actually not due to Charles Darwin himself. It has been attributed to H. Spencer and appeared first in the 5th edition of the Origin of Species

    Google Scholar 

  5. M. Eigen: Naturwissenschaften 58, 465 (1971)

    Article  ADS  Google Scholar 

  6. M. Eigen, P. Schuster: The Hvpercvcle — A Principle of Natural Self-Organization (Springer Verlag, Berlin 1979). The booklet is a combined reprint of three papers: Naturwissenschaften 64, 541 (1977) and 65, 7 and 341 (1978)

    Google Scholar 

  7. M. Eigen: Chemica Scripta 26B, 13 (1986)

    Google Scholar 

  8. P. Schuster: Chemica Scripta 26B, 27 (1986)

    Google Scholar 

  9. C.K. Biebricher, M. Eigen, W.C. Gardiner: J. Biochem. 22, 2544 (1983)

    Article  Google Scholar 

  10. C.K. Biebricher, M. Eigen, W.C. Gardiner: J. Biochem. 23, 3186 (1984)

    Article  Google Scholar 

  11. C.K. Biebricher, M. Eigen, W.C. Gardiner: J. Biochem. 24, 6550 (1985)

    Article  Google Scholar 

  12. E. Domingo, R.A. Flavell, C. Weissmann: Gene 1, 3 (1976)

    Article  Google Scholar 

  13. E. Domingo, D. Sabo, T. Taniguchi, C. Weissmann: Cell 13, 735 (1978)

    Article  Google Scholar 

  14. E. Domingo, M. Davilla, J. Ortin: Gene 11, 333 (1980)

    Article  Google Scholar 

  15. J. Ortin, R. Najero, C. Lopez, M. Davilla, E. Domingo: Gene 11, 319 (1980)

    Article  Google Scholar 

  16. S. Fields, G. Winter: Gene 15, 207 (1981)

    Article  Google Scholar 

  17. D.E. Dykhuizen, D.L. Hartl: Microbiol. Rev. 47, 150 (1983)

    Google Scholar 

  18. M. Eigen: Ber. Bunsenges. Phys. Chem. 89, 658 (1985) This concept of representing genotypes by a point space was first introduced by I. Rechenberg: Evolutionsstrategie (F. Frommann Verlag, Stuttgart 1973)

    Google Scholar 

  19. M. Kimura: The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge 1983)

    Google Scholar 

  20. S. Spiegelmann: Quart. Rev. Biophys. 4, 213 (1971)

    Article  Google Scholar 

  21. M. Eigen, J. McCaskill, P. Schuster: J. Phys. Chem. (1987), in press

    Google Scholar 

  22. T.R. Cech: Science 236, 1532 (1987)

    Article  ADS  Google Scholar 

  23. P. Schuster, K. Sigmund: J. theor. Biol. 100, 533 (1983)

    Article  MathSciNet  Google Scholar 

  24. S. Shahshahani: Memoirs Am. Math. Soc. 211 (1979)

    Google Scholar 

  25. K. Sigmund: In Lotka-Volterra-Approach to Cooperation and Competition in Dynamic Systems, ed. by W. Ebeling, M. Peschel (Akademie Verlag, Berlin 1985) p. 63

    Google Scholar 

  26. K. Sigmund: In Dynamical Systems and Environmental Models, ed. by F. Avert (Akademie Verlag, Berlin 1987)

    Google Scholar 

  27. P. Schuster, K. Sigmund: Ber. Bunsenges. Phys. Chem. 89, 668 (1985)

    Google Scholar 

  28. C.J. Thompson, J.L. McBride: Math. Biosc. 21, 127 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. B.L. Jones, R.H. Enns, S.S. Rangnekar: Bull. Math. Biol. 38, 12 (1976)

    Google Scholar 

  30. D. Rumschitzky: J. Math. Biol. 24, 667 (1987)

    Article  MathSciNet  Google Scholar 

  31. P. Schuster: Physica 22D, 100 (1986)

    MathSciNet  Google Scholar 

  32. P. Schuster, J. Swetina: Stationary Mutant Distributions and Evolutionary Optimization, preprint (1987)

    Google Scholar 

  33. W.J. Ewens: Mathematical Population Genetics, Biomathematics, Vol. 9 (Springer Verlag, Berlin 1979)

    MATH  Google Scholar 

  34. P. Schuster: Physica Scripta 35, 402 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. W. Fontana, P. Schuster: Biophys. Chem. 26, 123 (1987)

    Article  Google Scholar 

  36. M. Zuker, P. Stiegler: Nucleic Acids Res. 9, 133 (1981)

    Article  Google Scholar 

  37. M. Zuker, D. Sankoff: Bull. Math. Biol. 46, 591 (1984)

    MATH  Google Scholar 

  38. J. Swetina, P. Schuster: Biophys. Chem. 16, 329 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuster, P. (1988). Potential Functions and Molecular Evolution. In: Markus, M., Müller, S.C., Nicolis, G. (eds) From Chemical to Biological Organization. Springer Series in Synergetics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73688-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73688-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73690-2

  • Online ISBN: 978-3-642-73688-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics