Skip to main content

Nimodipine and Neural Plasticity in the Peripheral Nervous System of Adult and Aged Rats

  • Conference paper
The Calcium Channel: Structure, Function and Implications

Part of the book series: Bayer AG Centenary Symposium ((BAYER))

Abstract

Neural plasticity as defined in this contribution is the capability of the nervous system to adapt to a changing internal or external environment, to previous experience, or to trauma. It is becoming increasingly clear that the nervous system is not a static, but rather a dynamic network of cells allowing adaptive changes at all levels of complexity. These can be studied at the molecular, morphological, neurophysiological, and behavioral level. Neural plasticity is an essential and central feature of adaptation. Nervous system plasticity is of great significance in relation to a number of important health-related problems, such as peripheral nerve, spinal cord, and brain injury, developmental disorders, learning disabilities, and dementia. Profound insight into the mechanism of neural plasticity is a prerequisite for advances in the therapy of these pathologies (Gelijns et al. 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers RF, Lovinger DM, Colley PA, Linden DJ, Routtenberg A (1986) Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 231:587–589

    Article  PubMed  CAS  Google Scholar 

  • Bär PR, Wiegant F, Lopes da Silva FH, Gispen WH (1984) Tetanic stimulation affects the metabolism of phosphoinositides in hippocampal slices. Brain Res 321:381–385

    Article  PubMed  Google Scholar 

  • Belleman P, Schade A, Towart R (1983) Dihydropyridine receptor in rat brain labelled with PH]nimodipine. Proc Natl Acad Sci USA 80:2356

    Article  Google Scholar 

  • Benowitz L, Shaskoua V, Yoon MG (1981) Specific changes in rapidly transported proteins during regeneration of the gold fish optic nerve. J Neurosci 1:300–307

    PubMed  CAS  Google Scholar 

  • Betz E, Deck K, Hoffmeister F (1985) Nimodipine: pharmacological and clinical properties. Schattauer, Stuttgart

    Google Scholar 

  • Bijlsma WA, Jennekens FGI, Schotman P, Gispen WH (1983) Stimulation by ACTH (4–10) of nerve fiber regeneration following sciatic nerve crush. Muscle Nerve 6:104–112

    Article  PubMed  CAS  Google Scholar 

  • Coper H, Jänicke B, Schulze G (1986) Biopsychological research on adaptivity across the life-span of animals. In: PD Baltes, Featherman DL, Lerner RM (eds) Life-span development and behavior. Erlbaum, Hillsdale pp 207–232

    Google Scholar 

  • De Graan PNE, Oestreicher AB, Schrama LH, Gispen WH (1986) Phosphoprotein B-50: localization and function. Progr Brain Res 69:37–50

    Article  Google Scholar 

  • De Koning P, Brakkee JH, Gispen WH (1986) Methods for producing a reproducible crush in the sciatic and tibial nerve of the rat and rapid and precise testing of return of sensory function. J Neurol Sci 74:237–241

    Article  PubMed  Google Scholar 

  • De Koning P, Gispen WH (1988) A rationale for the use of melanocortins in the treatment of nervous tissue damage. In: Stein DG, Sabel B (eds) Pharmacological approaches to the treatment of brain and spinal cord injuries. Plenum New York (in press)

    Google Scholar 

  • De Medinacelli L, Freed WJ, Wyatt RJ (1982) An index of the functional condition of rat sciatic nerve based on measurements made from walking trades. Exp Neurol 77:634–643

    Article  Google Scholar 

  • Gage FH, Björklund A, Stenevi U, Dunnett SB (1983) Intracerebral grafting in the aging brain. In: Gispen WH, Traber J (eds) Aging of the brain. Elsevier, Amsterdam

    Google Scholar 

  • Gage FH, Dunnett StB, Björklund A (1984) Spatial learning and motor deficits in aged rats. Neurobiol Age 5:43–48

    Article  CAS  Google Scholar 

  • Gelijns AC, Graaff PJ, Lopes da Silva FH, Gispen WH (1987) Future health care applications resulting from progress in the neurosciences: the significance of neural plasticity research. Health Policy 8:265–276.

    Article  Google Scholar 

  • Landfield PW (1983) Mechanisms of altered neural function during aging. Dev Neurol 7:51–71

    CAS  Google Scholar 

  • Landfield PW, McGaugh JL, Lynch G (1978) Impaired synaptic potentiation processes in the hippocampus of aged, memory-deficient rats. Brain Res 150:85

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, Baskin RK, Pitler TA (1981) Brain aging correlates: retardation by hormonal pharmacological treatments. Science 214:581–584

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305:719–721

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1928) Degeneration and regeneration of the nervous system. Hafner, New York

    Google Scholar 

  • Schuurman T, Klein H, Beneke M, Traber J (1987) Nimodipine and motor deficits in the aged rats. Neurosci Res Commun 1:9–15

    CAS  Google Scholar 

  • Skene JHP, Willard M (1981) Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Bioi 89:86–95

    Article  CAS  Google Scholar 

  • Tielen AM, Mollevanger WJ, Lopes da Silva FH, Hollander CF (1983) Neuronal plasticity in hippocampal slices of extremely old rats. Dev Neurol 7:73–84

    Google Scholar 

  • Varon S (1985) Factors promoting the growth of the nervous system. Neurosciences 3:62

    Google Scholar 

  • Van der Zee CEEM, Schuurman T, Traber J, Gispen WH (1987) Oral administration ofnimodipine accelerates functional recovery following peripheral nerve damage in the rat. Neurosci Lett 83:143–148

    Article  PubMed  Google Scholar 

  • Willard M, Skene JHP (1982) Molecular events in axonal regeneration. In: A Nicholls (ed) Repair and regeneration of the nervous system. Springer, Heidelberg, pp 71–89

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gispen, W.H., Schuurman, T., Trabe, J. (1988). Nimodipine and Neural Plasticity in the Peripheral Nervous System of Adult and Aged Rats. In: Morad, M., Nayler, W.G., Kazda, S., Schramm, M. (eds) The Calcium Channel: Structure, Function and Implications. Bayer AG Centenary Symposium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73914-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73914-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50061-2

  • Online ISBN: 978-3-642-73914-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics