Skip to main content

Evolution of Natural Products

  • Chapter
Natural Products of Woody Plants

Part of the book series: Springer Series in Wood Science ((SSWOO))

Abstract

The evolution of natural products on earth has fascinated scientists and laymen alike for many years. A vast literature has been accumulated concerning the hypothetical interface of the prebiotic (chemical) and the organismic (biochemical) phases (50, 60). Nevertheless the entire concept, including the validity of its experimental basis, has more recently been questioned. Indeed the concept introduces a problem of the hen-and-egg type. Which ones came first — the complex molecules with genetic and enzymatic potential or the molecules generated by such catalytic macromolecules? Cairns-Smith (10) gave the sole reasonable answer: genes and enzymes. According to this author the most central molecules of life are the same in all organisms on earth today. Hence all life has descended from a common ancestor in which the central biochemical system was already fixed. That it should have remained fixed for so long is surely because of the critical interdependence of all components of the central highly complex machinery. Hence the ancestor must be situated at a quite high position of the evolutionary tree, preceded by simpler forms in which chemical reactions were catalyzed initially by geochemical genetic material such as clay crystals and metal ions. In the resulting progressively more sophisticated system “genetic takeover” must have occurred, the inorganic material having been gradually replaced by an organic one, preferentially endowed with information-carrying capacity and catalytic activity. So far only one macromolecule is known to possess such a double capacity: RNA (12). However, direct synthesis of RNA is an improbable event. The enzyme catalyzing its in vitro formation is far too complex to have had a clay template analogue on primitive earth (10).

This chapter is dedicated to the memory of Prof. Dr. Rolf Dahlgren (1932–1987), Botanical Museum, University of Copenhagen, who courageously broke away from tradition, introducing chemical data not only for refinement but as decisive criteria in the construction of his system of angiosperm classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anhut S, Zinsmeister H D, Mues R, Barz W, Mackenbrock K, Köster K, Markham K R 1984 The first identification of isoflavones from a bryophyte. Phytochemistry 23: 1073–1075

    Article  CAS  Google Scholar 

  2. Bate-Smith E C 1972 Chemistry and phylogeny of the angiosperms. Nature 269: 353–354

    Article  Google Scholar 

  3. Bate-Smith E C 1973 Systematic distribution of ellagitannins in relation to the phylogeny and clas-sification of the angiosperms. In: Bendz G, Santesson J (eds) Chemistry in botanical classification. Academic Press London, 93–102

    Google Scholar 

  4. Bate-Smith E C 1984 Age and distribution of galloyl esters, iridoids and certain other repellents in plants. Phytochemistry 23: 945–950

    Article  CAS  Google Scholar 

  5. Bate-Smith E C, Metcalfe C R 1957 Leuco-anthocyanins. 3. The nature and systematic distribution of tannins in dicotyledonous plants. J Linn Soc Bot 55: 669–705

    Article  Google Scholar 

  6. Birch A J 1963 Biosynthetic pathways. In: Swain T (ed) Chemical plant taxonomy. Academic Press London, 141–166

    Google Scholar 

  7. Birch A J 1973 Biosynthetic pathways in chemical phylogeny. In: Bendz G, Santesson J (eds) Chemistry in botanical classification. Academic Press London, 261–270

    Google Scholar 

  8. Bolzani V da S, da Silva M F das G F, da Rocha A I, Gottlieb O R 1984 Indole alkaloids as systematic markers of the Apocynaceae. Biochem Syst Ecol 12: 159–166

    CAS  Google Scholar 

  9. Cagnin MAH, Gottlieb O R 1978 Isoflavonoids as systematic markers. Biochem Syst Ecol 6: 225–238

    Article  CAS  Google Scholar 

  10. Cairns-Smith AG 1985 The first organisms. Sci Am 252 (6): 74–82

    Article  Google Scholar 

  11. Carey F A, Sundberg R J 1984 Advanced organic chemistry. Part B: Reactions and synthesis. 2nd edn. Plenum Press New York, 570

    Google Scholar 

  12. Cech T R 1986 RNA as an enzyme. Sci Am 255 (3): 76–84

    Google Scholar 

  13. Chapman D J, Ragan M A 1980 Evolution of biochemical pathways: Evidence from comparative biochemistry. Ann Rev Plant Physiol 31: 639–678

    Article  CAS  Google Scholar 

  14. Clark R L, Stech T L 1979 Morphogenesis in Dictyostelium: an orbital hypothesis. Science 204: 1163–1168

    Article  PubMed  CAS  Google Scholar 

  15. Cronquist A 1977 On the taxonomic significance of secondary metabolites in angiosperms. In: Kubitzki K (ed) Flowering plants. Evolution and classification of higher categories (Plant Syst Evol, Suppl 1). Springer Wien, 179–189

    Google Scholar 

  16. Cronquist A 1981 An integrated system of classification of flowering plants. Columbia University Press New York, 2162 pp

    Google Scholar 

  17. Cronquist A 1983 Some realignments in the dicotyledons. In: Ehrendorfer F, Dahlgren R (eds) New evidence of relationships and modern systems of classification of the angiosperms. Nord J Bot 3: 75–83

    Google Scholar 

  18. Dahlgren R 1980 A revised system of classification of the angiosperms. J Linn Soc Bot 80: 91–124

    Article  Google Scholar 

  19. Dahlgren R 1983 The importance of modern serological research for angiosperm classification. In: Jensen U, Fairbrothers D E (eds) Proteins and nucleic acids in plant systematics. Springer Berlin Heidelberg New York Tokyo, 371–394

    Google Scholar 

  20. Eccles J C 1979 The human mystery. Springer, Berlin Heidelberg New York Tokyo, 57

    Book  Google Scholar 

  21. Ehrlich P R, Raven P H 1965 Butterflies and plants: A study in co-evolution. Evolution 18: 586–608

    Article  Google Scholar 

  22. Emerenciano V de P, Kaplan MAC, Gottlieb OR 1985 Evolution of sesquiterpene lactones in angiosperms. Biochem Syst Ecol 13: 145–166

    Article  CAS  Google Scholar 

  23. Emerenciano V de P, Kaplan MAC, Gottlieb O R, Bonfanti M R de M, Ferreira Z S, Comegno L M A 1986 Evolution of sesquiterpene lactones in Asteraceae. Biochem Syst Ecol 14: 585–589

    Article  CAS  Google Scholar 

  24. Erdtman H 1973 Molecular taxonomy. In: Miller L P (ed) Phytochemistry. Vol III. Inorganic elements and special groups of chemicals. Van Nostrand Reinhold New York, 327–350

    Google Scholar 

  25. Fabian P 1984 Atmosphäre und Umwelt. Springer, Berlin Heidelberg New York Tokyo, 24

    Google Scholar 

  26. Ferreira Z S, Gottlieb O R 1982 Polyacetylenes as systematic markers in dicotyledons. Biochem Syst Ecol 10: 155–160

    Article  CAS  Google Scholar 

  27. Ferreira Z S, Gottlieb O R, Roque N F 1980 Chemosystematic implications of benzyltetrahydroiso- quinolines in Aniba species. Biochem Syst Ecol 8: 51–54

    Article  CAS  Google Scholar 

  28. Gershenzon J, Mabry T J 1983 Secondary metabolites and the higher classification of angio-sperms. In: Ehrendorfer F, Dahlgren R (eds) New evidence of relationships and modern systems of classification of the angiosperms. Nord J Bot 3: 5–34

    Google Scholar 

  29. Gomes C M R, Gottlieb O R 1978 The evolution of structural biopolymers and secondary metabolites is connected ? Rev Bras Bot 1: 41–45

    CAS  Google Scholar 

  30. Gomes C M R, Gottlieb O R 1980 Alkaloid evolution and angiosperm systematics. Biochem Syst Ecol 10: 81–87

    Article  Google Scholar 

  31. Gomes C M R, Gottlieb O R, Gottlieb R C, Salatino A 1981 Chemosystematics of the Papilionoideae. In: Polhill R M, Raven P H (eds) Advances in legume systematics, Part 2. Royal Botanic Gardens Kew, 465–488

    Google Scholar 

  32. Gomes C M R, Gottlieb O R, Marini-Bettölo G B, Delle Monache F, Polhill R M 1981 Systematic significance of flavonoids in Derris and Lonchocarpus (Tephrosieae). Biochem Syst Ecol 9: 129–147

    Article  CAS  Google Scholar 

  33. Gottlieb O R 1982 Micromolecular evolution, systematics and ecology, an essay into a novel botanical discipline. Springer Berlin Heidelberg New York Tokyo, 170 pp

    Google Scholar 

  34. Gottlieb O R 1984 Phytochemistry and the evolution of angiosperms. Anais Acad Brasil Cien 56: 43–50

    CAS  Google Scholar 

  35. Gottlieb O R, Guajardo T E, Young M C M 1982 Evolution of flavonoids in Embryobionta. In: Färkas L, Gabor M, Källay F, Wagner H (eds) Flavonoids and bioflavonoids 1981. Elsevier Amsterdam, 227–244

    Google Scholar 

  36. Gottlieb O R, Kubitzki K 1981 Chemogeography of Aniba (Lauraceae). Plant Syst Evol 137: 281–289

    Article  CAS  Google Scholar 

  37. Gottlieb O R, Kubitzki K 1981 Chemosystematics of Aniba (Lauraceae). Biochem Syst Ecol 9: 5–12

    Article  CAS  Google Scholar 

  38. Gottsberger G, Gottlieb O R 1980 Blue flowers and phylogeny. Rev Bras Bot 3: 79–83

    Google Scholar 

  39. Gottsberger G, Gottlieb O R 1981 Blue flower pigmentation and evolutionary advancement. Biochem Syst Ecol 9: 13–18

    Article  CAS  Google Scholar 

  40. Hegnauer R 1962–1973 Chemotaxonomie der Pflanzen. Vols 1–6. Birkhäuser Basel

    Google Scholar 

  41. Hegnauer R 1977 Cyanogenic compounds as systematic markers in Tracheophyta. In: Kubitzki K (ed) Flowering plants. Evolution and classification of higher categories (Plant Syst Evol, Suppl 1). Springer Wien, 191–209

    Google Scholar 

  42. Heywood V H 1973 The role of chemistry in plant systematics. Pure Appl Chem 34: 355–375

    Article  CAS  Google Scholar 

  43. Huber H 1977 The treatment of monocotyledons in an evolutionary system of classification. In: Kubitzki K (ed) Flowering plants. Evolution and classification of higher categories (Plant Syst Evol, Suppl 1). Springer Wien, 285–298

    Google Scholar 

  44. Huber H 1982 Die zweikeimblättrigen Gehölze im System der Angiospermen. Mitt Bot Staats- samml München 18: 59–78

    Google Scholar 

  45. Ibrahim R K, De Luca V, Jay M, Voirin B 1982 Polymethylated flavonol synthesis is catalyzed by distinct O-methyltransferases. Naturwissenschaften 69: 41–42

    Article  CAS  Google Scholar 

  46. Kaplan MAC, Gottlieb O R 1982 Iridoids as systematic markers in dicotyledons. Biochem Syst Ecol 10: 329–347

    Article  CAS  Google Scholar 

  47. Kolattukudy P E 1980 Biopolyester membranes of plants. Science 208: 990–1000

    Article  PubMed  CAS  Google Scholar 

  48. Kubitzki K, Gottlieb O R 1984 Micromolecular patterns and the evolution and major classification of angiosperms. Taxon 33: 375–391

    Article  Google Scholar 

  49. Kubitzki K, Gottlieb O R 1984 Phytochemical aspects of angiosperm origin and evolution. Acta Bot Neerl 33: 457–468

    CAS  Google Scholar 

  50. Kuhn H, Waser J 1981 Molecular self-organization and the origin of life. Angew Chem Int Ed 20: 500–520

    Article  Google Scholar 

  51. Lewin RA 1981 Prochloron and the theory of symbiogenesis. In: Fredrick J F (ed) Origins and evolution of eukaryotic intracellular organelles. Ann New York Acad Sci 361: 325–329

    Google Scholar 

  52. Manitto P 1981 Biosynthesis of natural products. Ellis Horwood Chichester, 176

    Google Scholar 

  53. Margulis L 1981 Symbiosis in cell evolution — Life and its environment on the Earth. Freeman, San Francisco, 419 pp

    Google Scholar 

  54. Margulis L, Schwartz K W 1982 Five kingdoms — An illustrated guide to the phyla of life on Earth. Freeman San Francisco, 338 pp

    Google Scholar 

  55. Markham K R, Porter L J 1978 Chemical constituents of the bryophytes. Prog Phytochem 5: 181–272

    CAS  Google Scholar 

  56. Mayr R 1982 The growth of biological thought — diversity, evolution and inheritance. Harvard University Press Cambridge, 63–64

    Google Scholar 

  57. McClure J W 1975 Physiology and function of flavonoids. In: Harborne J B, Mabry T J, Mabry H (eds) The flavonoids. Academic Press London, 970–1055

    Google Scholar 

  58. McKey D 1980 Origins of novel alkaloid types: a mechanism for rapid phenotypic evolution of plant secondary compounds. Am Nat 115: 754–759

    Article  CAS  Google Scholar 

  59. Melkonian M 1982 Structural and evolutionary aspects of the flagellar apparatus in green algae and land plants. Taxon 31: 255–265

    Article  Google Scholar 

  60. Miller S L, Orgel L E 1974 The origins of life on the earth. Prentice-Hall Englewood Cliffs, 229 pp

    Google Scholar 

  61. Niklas K J 1986 Computer-simulated plant evolution. Sci Am 254 (3): 68–75

    Article  Google Scholar 

  62. Niklas K J, Pratt L M 1980 Evidence for lignin-like constituents in early Silurian (Llandoverian) plant fossils. Science 209: 396–397

    Article  PubMed  CAS  Google Scholar 

  63. Niklas K J, Tiffney B H, Knoll AH 1983 Patterns in vascular land plant diversification. Nature 303: 614–616

    Article  Google Scholar 

  64. Rhoades D F (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal G A, Janzen D H (eds) Herbivores, their interaction with secondary metabolites. Academic Press New York, 3–54

    Google Scholar 

  65. Salatino A, Gottlieb O R 1980 Quinolizidine alkaloids as systematic markers of the Papilionoide- ae. Biochem Syst Ecol 8. 133–147

    Article  CAS  Google Scholar 

  66. Salatino A, Gottlieb OR 1981 A chemo-geographical perspective of the evolution of quinolizidine bearing Papilinoideae. Rev Bras Bot 4: 83–88

    CAS  Google Scholar 

  67. Salatino A, Gottlieb O R 1981 Quinolizidine alkaloids as systematic markers of the Genisteae. Biochem Syst Ecol 9: 267–273

    Article  CAS  Google Scholar 

  68. Salatino A, Gottlieb O R 1983 Chemogeographical evolution of quinolizidines in Papilionoideae. Plant Syst Evol 143: 167–174

    Article  CAS  Google Scholar 

  69. Sarkanen K V, Ludwig C H 1971 Lignins. Occurrence, formation, structure, and reactions. John Wiley New York, 916 pp

    Google Scholar 

  70. Schopf J W 1978 The evolution of the earliest cells. Sci Am 239: 110–138

    Article  PubMed  CAS  Google Scholar 

  71. Seaman F C 1982 Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 48: 121–595

    Article  CAS  Google Scholar 

  72. da Silva M F das G F, Gottlieb O R 1987 Evolution of quassionoids and limonoids in the Rutales. Biochem Syst Ecol 15: 85–103

    Article  Google Scholar 

  73. da Silva M F das G F, Gottlieb O R, Dreyer D L 1984 Evolution of limonoids in Meliaceae. Biochem Syst Ecol 12: 299–310

    Article  Google Scholar 

  74. Sporne K R 1974 The morphology of the angiosperms. The structure and evolution of flowering plants. Hutchinson University Library London, 207 pp

    Google Scholar 

  75. Sporne K R 1976 Character correlations among angiosperms and the importance of fossil evidence in assessing their significance. In: Beck C B (ed) Origin and early evolution of angiosperms. Columbia University Press New York, 312–329

    Google Scholar 

  76. Sporne K R 1980 A re-investigation of character correlations among dicotyledons. New Phytol 85: 419–449

    Article  Google Scholar 

  77. Suire C, Asakawa Y 1979 Chemotaxonomy of bryophytes: a survey. In: Clarke G C S, Duckett J G (eds) Bryophyte systematics. Academic Press London, 447–477

    Google Scholar 

  78. Swain T 1977 Secondary compounds as protective agents. Ann Rev Plant Physiol 28: 479–501

    Article  CAS  Google Scholar 

  79. Swain T 1979 Tannins and lignins. In: Rosenthal G A, Janzen D H (eds) Herbivores, their interaction with secondary metabolites. Academic Press New York, 657–682

    Google Scholar 

  80. Takhtajan A 1980 Outline of the classification of flowering plants. Bot Rev 46: 226–359

    Article  Google Scholar 

  81. Thorne R F 1981 Phytochemistry and angiosperm phylogeny, a summary statement. In: Young D A, Seigier D S (eds) Phytochemistry and angiosperm phylogeny. Praeger New York, 233–295

    Google Scholar 

  82. Tutchek R 1975 Isolation and characterization of the p-hydroxy-/Hcarboxymethyl)-cinnamic acid (sphagnum acid) from the cell wall of Sphagnum magellanicum Brid. Z Pflanzenphysiol 76: 353–365

    Google Scholar 

  83. Wagenitz G 1976 Systematics and phylogeny of the Compositae (Asteraceae). Plant Syst Evol 125: 29–46

    Article  Google Scholar 

  84. White P T, Blair J C 1983 Nature’s dwindling treasures: Rain forests. Nat Geogr 163 [1]: 2–47

    Google Scholar 

  85. Whittaker R H 1969 New concepts of kingdoms of organisms. Science 163: 150–160

    Article  PubMed  CAS  Google Scholar 

  86. Wolken J J 1975 Photoprocesses, photoreceptors and evolution. Academic Press New York, 317 pp

    Google Scholar 

  87. Wolter-Filho W, da Rocha A I, Yoshida M, Gottlieb O R 1985 Ellagic acid derivatives from Rhabdodendron macrophyllum. Phytochemistry 24: 1991–1993

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gottlieb, O.R. (1989). Evolution of Natural Products. In: Rowe, J.W. (eds) Natural Products of Woody Plants. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74075-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74075-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74077-0

  • Online ISBN: 978-3-642-74075-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics