Skip to main content

Assembly and Insertion of a Multi-Subunit Nicotinic Acetylcholine Receptor into Plasma Membranes

  • Conference paper
Molecular Biology of Neuroreceptors and Ion Channels

Part of the book series: NATO ASI Series ((ASIH,volume 32))

Abstract

The nicotinic acetylcholine receptor (AChR) is one of a family of ion channel receptors, which are gated directly by neurotransmitters. Other receptors of this type include the GABA and glycine receptors. An important characteristic of these receptors is that they are composed of multiple distinct subunits all of which have a similar transmembrane topology (for a review see Barnard et al., 1987). The AChR is an oligomeric glycoprotein consisting of five subunits (α2,β,γ, and δ) of four different types. Five subunits span the plasma membrane and are arranged in a rosette to form an ion channel. The binding of acetylcholine (ACh) to the a subunits causes the membrane channel to open (for reviews see Karlin, 1980; Conti-Tronconi & Raftery,1982; Barrantes,1983; Anholt et al.,1984, and Popot & Changeux,1984). Each of the four subunits is coded by separate mRNAs. Thus, the production of a complete functional AChR molecule involves complex processes including not only the synthesis of the individual subunits but also their assembly in a particular order, and their insertion into the plasma membrane with the correct orientation (for a review see Merlie & Smith, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. J. & Blobel, G. (1981) In vitro synthesis, glycosylation, and membrane insertion of the four subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 78, 5598–5602.

    Article  PubMed  CAS  Google Scholar 

  • Anholt, R., Lindstrom, J. & Montal. M. (1984) The molecular basis of neurotransmission: structure and function of the nicotinic acetylcholine receptor. In: The Enzymes of Biological Membranes, Ed. Martonosi, A. Vol. 3, pp 335–401, Plenum Press, New York.

    Google Scholar 

  • Barnard, E.A., Miledi, R. & Sumikawa, K. (1982) Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond. B215, 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Barnard, E.A., Darlison, M.G. & Seeburg, P. (1987) Molecular biology of the GABA receptor: the receptor/channel superfamily. Trends Neurosci. 10, 502–509.

    Article  CAS  Google Scholar 

  • Barrantes, F.J, (1983) Recent developments in the structure and function of acetylcholine receptor. Int. Rev. Neurobiol. 24, 259–341.

    Article  PubMed  CAS  Google Scholar 

  • Blount, P. & Merlie, J. P. (1988) Native folding of an acetylcholine receptor a subunit expressed in the absence of other receptor subunits. J. Biol. Chem. 263, 1072–1080.

    PubMed  CAS  Google Scholar 

  • Carlin, B.E., Lawrence, J. C., Lindstrom, J. M. & Merlie, J. P. (1986) An acetylcholine receptor precursor a subunit that binds α-bungarotoxin but not d-tubocurarine. Proc. Natl. Acad. Sci. USA 83, 498–502.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, T., Ballivet, M., Patrick, J. & Heinemann, S. (1983) Nucleotide and deduced amino acid sequences of Torpedocalifornica acetylcholine receptor 7 subunit. Proc. Natl. Acad. Sci. USA 80, 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, T., Green, W. N., Hartman, D. S., Hayden, D., Paulson, H. L., Sigworth, F. J., Sine, S. M., & Swedlund, A. (1987) Genetic reconstitution of functional acetylcholine receptor channels in mouse fibroblasts. Science, 238, 1688–1694.

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B.M. & Raftery, M.A. (1982) The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Ann. Rev. Biochem. 51, 491–530.

    Article  PubMed  CAS  Google Scholar 

  • Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317–387.

    Article  CAS  Google Scholar 

  • Fujita, N., Nelson, N., Fox, T., Claudio, T., Lindstrom, J., Reizman, H. & Hess, G. (1986) Biosynthesis of the Torpedocalifornica receptor a subunit in yeast. Science, 231, 1284–1287.

    Article  PubMed  CAS  Google Scholar 

  • Gershoni, J. M., Hawrot, E. & Lentz, T. L. (1983) Binding of a-bungarotoxin to isolated a subunit of the acetylcholine receptor of Torpedo californica: quantitative analysis with protein blots. Proc. Natl. Acad. Sci. USA 80, 4973–4977.

    Article  PubMed  CAS  Google Scholar 

  • Green, P. J., Pines, 0. & Inouye, M. (1986) The role of antisense RNA in gene regulation. Annu. Rev. Biochem. 55, 569–597.

    Article  PubMed  CAS  Google Scholar 

  • Haggerty, J. G. & Froehner, S. C. (1981) Restoration of 125I-α-bungarotoxin binding activity to the α-subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. J. Biol. Chem. 256, 8294–8297.

    PubMed  CAS  Google Scholar 

  • Harland, R. & Weintraub, H. (1985) Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA. J. Cell. Biol. 101, 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A. (1980) Molecular properties of nicotinic acetylcholine receptors. In: Cell Surface and Neuronal Function. Eds. Cotman, C.W., Poste, G. & Nicolson, G.L. Vol. 6, pp. 192–260, Elsevier Biomedical, Amsterdam, New York.

    Google Scholar 

  • Kurosaki, T., Fukuda, K., Konno, T., Mori, Y., Tanaka, K., Mishina, M. & Numa, S. (1987) Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. FEBS Letts. 214, 253–258.

    Article  CAS  Google Scholar 

  • Melton, D. (1985) Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc. Natl. Acad. Sci. U.S.A. 82, 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Merlie, J.P., Sebbane, R., Tzartos, S. & Lindstrom, J. (1982) Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. J. Biol. Chem. 257, 2694–2701.

    PubMed  CAS  Google Scholar 

  • Merlie, J.P. & Lindstrom, J. (1983) Assembly in vivo of mouse muscle acetylcholine receptor: identification of an a subunit species that may be an assembly intermediate. Cell, 34, 747–757.

    Article  PubMed  CAS  Google Scholar 

  • Merlie, J. P. & Smith, M. M. (1986) Synthesis and assembly of acetylcholine receptor, a multisubunit membrane glycoprotein. J. Memb. Biol. 91, 1–10.

    Article  CAS  Google Scholar 

  • Miledi, R. & Sumikawa, K. (1982) Synthesis of cat muscle acetylcholine receptors by Xenopus oocytes. Biomed. Res. 3, 390–399.

    CAS  Google Scholar 

  • Miledi, R., Parker, I. & Sumikawa, K. (1982) Properties of acetylcholine receptors translated by cat muscle mRNA in Xenopus oocytes. EMBO J. 1, 1307–1312.

    PubMed  CAS  Google Scholar 

  • Miledi, R., Parker, I. & Sumikawa, K (1988) Transplanting receptors from brains into oocytes. In: Fidia Award Lecture Series. Ed. Smith, J., Raven Press (in press).

    Google Scholar 

  • Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inazama, S., Takahashi, T., Kuno, M. & Numa, S. (1985) Location of functional regions of acetylcholine receptor a-subunit by site-directed mutagenesis. Nature, 313, 364–369.

    Article  PubMed  CAS  Google Scholar 

  • Oblas, B., Boyd, N. D. & Singer, R. H. (1983) Analysis of receptor-ligand interactions using nitrocellulose gel transfer: application to Torpedo acetylcholine receptor and alpha-bungarotoxin. Anal. Biochem. 130, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Popot, J-L. & Changeux, J-P. (1984) Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol. Rev. 64, 1162–1239.

    PubMed  CAS  Google Scholar 

  • Prives, J.M. & Olden, K. (1980) Carbohydrate requirement for expression and stability of acetylcholine receptor on the surface of embryonic muscle cells in culture. Proc. Natl. Acad. Sci. USA 77, 5263–5267.

    Article  PubMed  CAS  Google Scholar 

  • Sadler, S.E. & Mailer, J.L. (1981) Identification of a steroid receptor on the surface of Xenopus oocytes by photoaffinity labeling. J. Biol. Chem. 256, 6368–6373.

    PubMed  CAS  Google Scholar 

  • Sumikawa, K., Houghton, M., Emtage, J.S., Richards, B.M. & Barnard, E.A. (1981) Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature, 292, 862–864.

    Article  PubMed  CAS  Google Scholar 

  • Sumikawa, K., Parker, I. & Miledi, R. (1984) Separate fractions of mRNA from Torpedo electric organ induce chloride channels and acetylcholine receptors in Xenopus oocytes. EMBO J. 3, 2291–2294.

    PubMed  CAS  Google Scholar 

  • Sumikawa, K. & Miledi, R. (1988a) Repression of nicotinic acetylcholine receptor expression by antisense RNAs and an oligonucleotide. Proc. Natl. Acad. Sci. USA. 85, 1302–1306.

    Article  PubMed  CAS  Google Scholar 

  • Sumikawa, K., & Miledi, R. (1988b) Assembly of all ACh receptor subunits is a prerequisite for their efficient insertion into plasma membranes, (submitted).

    Google Scholar 

  • Sumikawa, K., & Miledi, R. (1988c) N-glycosylation of ACh receptor is required for insertion into plasma membranes, but not for subunit assembly, (submitted).

    Google Scholar 

  • Tzartos, S. J., & Changeux, J.-P. (1983) High affinity binding of α-bungarotoxin to the purified a-subunit and to its 27,000-dalton proteolytic peptide from Torpedo marmorata. Requirement for sodium dodecyl sulfate. EMBO J. 2, 381–387.

    PubMed  CAS  Google Scholar 

  • White, M.M., Mayne, K.M., Lester, H.A. and Davidson, N. (1985) Mouse-Torpedo hybrid acetylcholine receptors: Functional homology does not equal sequence homology. Proc. Natl. Acad. Sci. USA, 82, 4852–4856.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P. T., Lentz, T. L. & Hawrot, E. (1985) Determination of the primary amino acid sequence specifying the α bungarotoxin binding site on the α-subunit of the acetylcholine receptor from Torpedo californica. Proc. Natl. Acad. Sci. 82, 8790–8794.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sumikawa, K., Miledi, R. (1989). Assembly and Insertion of a Multi-Subunit Nicotinic Acetylcholine Receptor into Plasma Membranes. In: Maelicke, A. (eds) Molecular Biology of Neuroreceptors and Ion Channels. NATO ASI Series, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74155-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74155-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74157-9

  • Online ISBN: 978-3-642-74155-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics