Skip to main content

Altered Functional Expression of Alveolar Macrophage Subpopulations after Serpentine and Amphibole Asbestos Exposure

  • Conference paper
Effects of Mineral Dusts on Cells

Part of the book series: NATO ASI Series ((ASIH,volume 30))

  • 75 Accesses

Abstract

There is considerable evidence that alveolar macrophages play a pivotal role in the pathogenesis of asbestosis (Kagan 1985, Kagan 1988), since these phagocytic cells are a notable feature of histologic lesions at sites of asbestos deposition in the lungs (Davis 1963, Brody et al. 1981, Oghiso et al. 1984). Multinucleated giant cells also are a prominent component of the macrophage response to inhaled asbestos (Kagan et al. 1983a, Kagan 1988). Conceivably, the accumulation of alveolar macrophages in evolving asbestotic lesions may reflect a localized tissue response to the release of asbestos-induced pulmonary chemoattractants. Support for this concept is provided by experimental studies which have demonstrated that inhalation of, asbestos fibers can evoke the release of chemotactic stimuli for alveolar macrophages (Kagan et al. 1983b, Warheit et al. 1985). Asbestos inhalation also is associated with enhanced expression of immune- associated (la) surface antigens on alveolar macrophages and with augmented production of the immunostimulatory monokine, interleukin-1 (Hartmann et al. 1984a, Hartmann et al. 1984b). Since the surface expression of la antigens on macrophages is a useful morphologic correlate of macrophage activation (Garrett et al. 1984, Kunkel et al. 1984), these findings collectively suggest that contact with asbestos fibers may induce alveolar macrophages to become functionally activated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becklake MR (1982) Asbestos-related diseases of the lungs and pleura. Am Rev Respir Dis 127: 187–194

    Google Scholar 

  • Brody AR, Hill LH, Adkins B, Jr, O’Connor RW (1981) Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis 123: 670–679

    PubMed  CAS  Google Scholar 

  • Chandler DB, Fuller WC, Jackson RM, Fulmer JD (1986) Studies of membrane receptors and phagocytosis in subpopulations of rat alveolar macrophages. Am Rev Respir Dis 133:461–467

    PubMed  CAS  Google Scholar 

  • Davis JMG (1963) An electron microscopy study of the effect of asbestos dust on the lung. BrJ Exp Pathol 44: 454–464

    CAS  Google Scholar 

  • Elias JA, Schreiber AD, Gustilo K, Chien P, Rossman MD, Lammie PJ, Daniele RP (1985) Differential interleukin 1 elaboration by unfractionated and density fractionated human alveolar macrophages and blood monocytes: relationship to cell maturity. J Immunol 135: 3198–3204

    PubMed  CAS  Google Scholar 

  • Ferro TJ, Kern JA, Elias JA, Kamoun M, Daniele RP, Rossman MD (1987) Alveolar macrophages, blood monocytes, and density fractionated alveolar macrophages differ in their ability to promote lymphocyte proliferation to mitogen and antigen. Am Rev Respir Dis 135: 682–687

    PubMed  CAS  Google Scholar 

  • Garrett KC, Richerson HB, Hunninghake GW (1984) Pathogenesis of the granulomatous lung diseases. II. Mechanism of granuloma formation. Am Rev Respir Dis 130: 477–483

    Google Scholar 

  • Hartmann DP, Georgian MM, Kagan E (1984a) Enhanced alveolar macrophage la antigen expression after asbestos inhalation. J Immunol 132: 2693–2695

    PubMed  CAS  Google Scholar 

  • Hartmann DP, Georgian MM, Oghiso Y, Kagan E (1984b) Enhanced interleukin activity after asbestos inhalation. Clin Exp Immunol 55: 643–650

    PubMed  CAS  Google Scholar 

  • Kagan E, Oghiso Y, Hartmann DP (1983a) The effects of chrysotile and crocidolite asbestos on the lower respiratory tract: analysis of bronchoalveolar lavage constituents. Environ Res 32: 382–397

    Article  PubMed  CAS  Google Scholar 

  • Kagan E, Oghiso Y, Hartmann DP (1983b) Enhanced release of a chemoattractant for alveolar macrophages after asbestos inhalation. Am Rev Respir Dis 128: 680–687

    PubMed  CAS  Google Scholar 

  • Kagan E (1985) Current perspectives in asbestosis. Ann Allergy 54: 464–473

    PubMed  CAS  Google Scholar 

  • Kagan E (1988) Current issues regarding the pathobiology of asbestosis: a chronologic perspective. J Thorac Imag 4 (3): 1–9

    Article  Google Scholar 

  • Kunkel SL, Chensue SW, Plewa M, Higashi GI (1984) Macrophage function in the Schistosoma mansoni egg-induced pulmonary granuloma: role of arachidonic acid metabolites in la antigen expression. Am J Pathol 114: 240–249

    PubMed  CAS  Google Scholar 

  • Mizel SB (1981) Production and quantitation of lymphocyte-activating factor (interleukin 1). In: Herscowitz HB, Holden HT, Bellanti JA, Ghaffar A (eds) Manual of Macrophage Methodology: Collection, Characterization and Function. Marcel Dekker, New York, p 407

    Google Scholar 

  • Murphy MA, Herscowitz HB (1984) Heterogeneity among alveolar macrophages in humoral and cell mediated immune responses: separation of functional subpopulations by density gradient centrifugation on Percoll. J Leukocyte Biol 35: 39–54

    PubMed  CAS  Google Scholar 

  • Nagasawa H, Miyaura C, Abe E, Suda T, Horiguchi M, Suda T (1987) Fusion and activation of human alveolar macrophages induced by recombinant interferon-7 and their suppression by dexamethasone. Am Rev Respir Dis 136: 916–921

    Article  PubMed  CAS  Google Scholar 

  • Oghiso Y, Kagan E, Brody AR (1984) Intrapulmonary distribution of inhaled chrysotile and crocidolite asbestos: ultrastructural features. Br J Exp Pathol 65: 467–484

    PubMed  CAS  Google Scholar 

  • Robinson BWS, Rose AH, Hayes A, Musk AW (1988) Increased pulmonary gamma interferon production in asbestosis. Am Rev Respir Dis 138: 278–283

    PubMed  CAS  Google Scholar 

  • Shellito J, Kaltreider HB (1984) Heterogeneity of immunologic function among subfractions of normal rat alveolar macrophages. Am Rev Respir Dis 129: 747–753

    PubMed  CAS  Google Scholar 

  • Warheit DB, George G, Hill LH, Snyderman R, Brody AR (1985) Inhaled asbestos activates a complement-dependent chemoattractant for macrophages. Lab Invest 52: 505–514

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kagan, E., Inamoto, T., Georgian, M.M. (1989). Altered Functional Expression of Alveolar Macrophage Subpopulations after Serpentine and Amphibole Asbestos Exposure. In: Mossman, B.T., Bégin, R.O. (eds) Effects of Mineral Dusts on Cells. NATO ASI Series, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74203-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74203-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74205-7

  • Online ISBN: 978-3-642-74203-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics