Skip to main content

Changes in the Structure and Function of the Red Cell Membrane Skeleton and Hemolytic Anemias

  • Conference paper
Molecular Basis of Membrane-Associated Diseases
  • 78 Accesses

Abstract

This chapter reviews three molecular defects of the red cell membrane skeleton. In all three cases, the immediate cause of hemolysis are the abnormalities of skeletal protein interactions. However, only in one case, the primary cause of hemolysis is a hereditary defect of a molecule of the membrane skeleton, while in the other two cases the skeletal defect is either potentiated by an acquired disorder or caused by a mutation in the hemoglobin molecule. The first case reviewed is a strictly hereditary defect of the skeleton: A mutation of the protein spectrin which is expressed clinically as a severe elliptocytic hemolytic anemia. The second one involves a combination of an inherited spectrin defect with an acquired circulatory disorder which manifests as a severe life-threatening hemolytic anemia. Finally, an example is given of a defect in skeletal protein interactions which is not caused by mutations of skeletal proteins. In this case, irreversible hemichromes, the final products of intracellular hemoglobin denaturation, were found to release hemin which decreases the skeletal stability by weakening the spectrin-protein 4.1-actin interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen CM (1983) The molecular organization of the red cell membrane skeleton. Sem Hematol 20:141–158

    CAS  Google Scholar 

  2. Marchesi VT (1985) Stabilizing infrastructure of cell membranes. Annu Rev Cell Biol 1:531–561

    Article  PubMed  CAS  Google Scholar 

  3. Bennett V (1985) The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem 54:273–304

    Article  PubMed  CAS  Google Scholar 

  4. Lazarides E (1987) From genes to structural morphogenesis: the genesis and epigenesis of a red blood cell. Cell 51:345–356

    Article  PubMed  CAS  Google Scholar 

  5. Byers TJ, Branton D (1985) Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci USA 82:6153–6157

    Article  PubMed  CAS  Google Scholar 

  6. Liu SC, Derick LH, Palek J (1987) Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol 104:361–376

    Article  Google Scholar 

  7. Cohen CM, Foley SF (1984) Biochemical characterization of complex formation by human erythrocyte spectrin, protein 4.1 and actin. Biochemistry 23:6091–6098

    Article  PubMed  CAS  Google Scholar 

  8. Hargreaves WR, Giedd KN, Verkleij A, Branton D (1980) Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles. J Biol Chem 255:11965–11972

    PubMed  CAS  Google Scholar 

  9. Pasternack GR, Anderson RA, Leto TL, Marchesi VT (1985) Interactions between protein 4.1 and band 3. J Biol Chem 269:3676–3683

    Google Scholar 

  10. Korsgren C, Cohen CM (1986) Purification and properties of human erythrocyte band 4.2. J Biol Chem 261:5536–5543

    PubMed  CAS  Google Scholar 

  11. Korsgren C, Cohen CM (1988) Associations of human erythrocyte band 4.2: Binding to ankyrin and to the cytoplasmic domain of band 3. J Biol Chem (in press)

    Google Scholar 

  12. Cohen AM, Liu SC, Derick LH, Palek J (1986) Ultrastructural studies of the interaction of spectrin with phosphatidylserine liposomes. Blood 68:920–926

    PubMed  CAS  Google Scholar 

  13. Cohen AM, Liu SC, Lawler J, Derick L, Palek J (1988) Identification of the protein 4.1 binding site to phosphatidylserine vesicles. Biochemistry 27:614–619

    Article  PubMed  CAS  Google Scholar 

  14. Rybicki AC, Heathe R, Lubin B, Schwartz RS (1988) Human erythrocyte protein 4.1 is a phosphatidylserine binding protein. J Clin Invest 81:255–260

    Article  PubMed  CAS  Google Scholar 

  15. Burn P (1988) Amphitropic proteins: a new class of membrane proteins. Trends Biochem Sci 13:79–83

    Article  PubMed  CAS  Google Scholar 

  16. Gardner K, Bennett V (1986) A new erythrocyte membrane-associated protein with calmodulin binding activity. J Biol Chem 261:1339–1348

    PubMed  CAS  Google Scholar 

  17. Gardner K, Bennett V (1987) Modulation of spectrin-actin assembly by erythrocyte adducin. Nature (London) 328:359–362

    Article  CAS  Google Scholar 

  18. Miche SM, Mooseker M, Morrow JS (1987) Erythrocyte adducin: a calmodulin-regulated ac-tin-bundling protein that stimulates spectrin-actin binding. J Cell Biol 105:2837–2845

    Article  Google Scholar 

  19. Fowler V (1986) An actomyosin contractile mechanism for erythrocyte shape transformations. J Cell Bioehem 31:1–9

    Article  CAS  Google Scholar 

  20. Fowler V, Bennett V (1984) Erythrocyte membrane tropomyosin. J Biol Chem 259:5978–5989

    PubMed  CAS  Google Scholar 

  21. Fowler V, Davis JQ, Bennett V (1987) Human erythrocyte myosin: identification and purification. J Cell Biol 100:47–55

    Article  Google Scholar 

  22. Hall TG, Bennett V (1987) Regulatory domains of erythrocyte ankyrin. J Biol Chem 262:10537–10545

    PubMed  CAS  Google Scholar 

  23. Mohandas N, Chasis JA, Shohet SB (1983) The influence of membrane skeleton on red cell deformability, membrane material properties and shape. Sem Hematol 20:225–240

    CAS  Google Scholar 

  24. Tsuji A, Ohnishi S (1986) Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 25:6133–6139

    Article  PubMed  CAS  Google Scholar 

  25. Palek J (1987) Hereditary elliptocytosis, spherocytosis and related disorders: consequences of a deficiency or a mutation of membrane skeletal proteins. Blood Rev 1:147–168

    Article  PubMed  CAS  Google Scholar 

  26. Palek J (1985) Hereditary elliptocytosis and related disorders. Clin Haematol 14:45–87

    PubMed  CAS  Google Scholar 

  27. Palek J, Liu S-C, Lawler J, Coetzer TL (1986) Molecular defects of alpha spectrin in hereditary elliptocytosis and pyropoikilocytosis. In: Bennett V, Cohen CM, Lux SE, Palek J (eds) Membrane skeletons and cytoskeletal-membrane associations. UCLA Symp Mol Cell Biol, New Ser, vol 38. Liss, New York, pp 357–369

    Google Scholar 

  28. Coetzer T, Lawler J, Prchal JT, Palek J (1987) Molecular determinants of clinical expression of hereditary elliptocytosis and pyropoikilocytosis. Blood 70:766–772

    PubMed  CAS  Google Scholar 

  29. Palek J, Coetzer T (1987) Clinical expression of alpha spectrin mutants in hereditary elliptocytosis. Blood Cells 13:237–50

    PubMed  CAS  Google Scholar 

  30. Lawler J, Liu SC, Palek J, Prchal J (1984) A molecular defect of spectrin in a subset of patients with hereditary elliptocytosis. J Clin Invest 73:1688–1695

    Article  PubMed  CAS  Google Scholar 

  31. Lawler J, Liu SC, Palek J, Prchal J (1982) Molecular defect of spectrin in hereditary pyropoikilocytosis: alterations in the trypsin-resistant domain involved in spectrin self-association. J Clin Invest 70:1019–1030

    Article  PubMed  CAS  Google Scholar 

  32. Liu SC, Palek J, Prchal J, Castleberry RP (1981) Altered spectrin dimer-dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis. J Clin Invest 68:597–605

    Article  PubMed  CAS  Google Scholar 

  33. Palek J, Coetzer T, Lahav M, Jarolim P, Lawler J, Wang W, Prchal JT (1987) Clinical and biochemical expression of double hétérozygotes for a-spectrin mutants that involve the spectrin heterodimer self-association site. Blood 70 (Suppl l):55a

    Google Scholar 

  34. Lawler J, Coetzer TL, Palek J, Jacob HS, Luban N (1985) Sp alphaI/65: a new variant of the alpha subunit of spectrin in hereditary elliptocytosis. Blood 66:706–709

    PubMed  CAS  Google Scholar 

  35. Alloisio N, Guetarni D, Morle L, Pothier B, Ducluzeau MT, Soun A, Colonna P, Clerc M, Philippe N, Delaunay J (1986) Sp alphaI/65 hereditary elliptocytosis in North Africa. Am J Hematol 23:113–122

    Article  PubMed  CAS  Google Scholar 

  36. Dacie J (1985) The haemolytic anaemias, 3rd edn. Livingstone, Edinburgh, pp 134–215

    Google Scholar 

  37. Kwaan HC (1987) Introduction: thrombotic microangiopathy. Sem Hematol 24:69–70

    Google Scholar 

  38. Byrnes JJ, Moake JL (1986) Thrombotic thrombocytopenic purpura and the hemolytic-uraemic syndrome: evolving concepts and therapy. Clin Haematol 15:413–442

    PubMed  CAS  Google Scholar 

  39. Kwaan HC (1987) Clinicopathologic features of thrombotic thrombocytopenic purpura. Sem Hematol 24:71–81

    CAS  Google Scholar 

  40. Kwaan HC (1987) Miscellaneous secondary thrombotic microangiopathy. Sem Hematol 24:141–147

    CAS  Google Scholar 

  41. Brain MC, Dacie JV, Hourihane DOB (1962) Microangiopathic haemolytic anaemia: the possible role of vascular lesions in pathogenesis. Br J Haematol 8:358–374

    Article  PubMed  CAS  Google Scholar 

  42. Peisach J, Blumberg WE, Rachmilewitz EA (1975) The demonstration of ferrihemochrome intermediates in Heinz body formation following the reduction of oxyhemoglobin A by acetyl-phenylhydrazine. Biochim Biophys Acta 393:404–418

    PubMed  CAS  Google Scholar 

  43. Winterbourn CC, Carrell RW (1974) Studies on hemoglobin denaturation and Heinz body formation in the unstable hemoglobins. J Clin Invest 54:678–689

    Article  PubMed  CAS  Google Scholar 

  44. Jacob HS (1970) Mechanism of Heinz body formation and attachment to red cell membrane. Sem Hematol 7:341–354

    CAS  Google Scholar 

  45. Liu SC, Palek J (1984) Hemoglobin enhances the self-association of spectrin heterodimers in human erythrocytes. J Biol Chem 259:11556–11562

    PubMed  CAS  Google Scholar 

  46. Lahav M, Liu SC, Jarolim P, Palek J (1987) Red cell membrane skeletal damage during hemoglobin denaturation. Blood 70 (Suppl 1): 40a

    Google Scholar 

  47. Jarolim P, Lahav M, Liu SC, Palek J (1988) Effect of hemoglobin oxidation products on red cell membrane skeletal stability and membrane protein interactions. Proc 14th Int Congr Biochemistry, Prague 1988

    Google Scholar 

  48. Liu SC, Zhai S, Palek J (1988) Detection of hemin release during hemoglobin S denaturation. Blood (in press)

    Google Scholar 

  49. Liu SC, Zhai S, Lawler J, Palek J (1985) Hemin-mediated dissociation of erythrocyte membrane skeletal proteins. J Biol Chem 260:12234–12239

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jarolim, P., Liu, SC., Coetzer, T.L., Lahav, M., Palek, J. (1989). Changes in the Structure and Function of the Red Cell Membrane Skeleton and Hemolytic Anemias. In: Azzi, A., Drahota, Z., Papa, S. (eds) Molecular Basis of Membrane-Associated Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74415-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74415-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74417-4

  • Online ISBN: 978-3-642-74415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics