Skip to main content

Biophysics and Technology of Ultrasound Hyperthermia

  • Chapter
Methods of External Hyperthermic Heating

Part of the book series: Clinical Thermology ((1289))

Abstract

Although characterization of tissues with ultrasound has been a subject of wide interest for over 20 years, there has not been a similar interest in using ultrasound in cancer therapy since the early trials in the 1930s, when ultrasound was used in a manner similar to the use of X-rays for therapeutic purposes. There are probably several reasons for this. First, the theory and equipment used in the field of diagnostic ultrasonics also have other applications, e.g., in defense (sonar) and in industry (flaw detection). Therefore, there are more resources and personnel available for research and development. Second, the therapeutic effects of ultrasound cannot be quantified by measuring the intensity of the beam (as is the case with X-rays), but by the temperature elevation induced in the tumor, which produces the beneficial effects. Interest was further reduced by the rapid development of radiotherapy as a method of treating tumors. It was not until the end of the 1970s that the potential of ultrasound as a method of inducing hyperthermia was shown (Fig. 2.1). Even since then it has not become as popular as microwaves, despite its many advantages. The main reason for this lack of popularity has been that the devices required to utilize ultrasound properly in tumor heating are fairly complex and have not yet become commercially available. If good devices do become available, it is expected that there will be increased interest in ultrasound hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apfel RE (1986) Prediction of tissue composition from ultrasonic measurements and mixture rules. J Acoust Soc Am 79: 148–152

    PubMed  CAS  Google Scholar 

  • Bamber JC, Hill CR (1979) Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med Biol 5: 149–157

    PubMed  CAS  Google Scholar 

  • Bamber JC, Nassiri DK (1985) Effect of gaseous inclusions on the frequency dependence of ultrasonic attenuation in liver. Ultrasound Med Biol 11: 293–298

    PubMed  CAS  Google Scholar 

  • Beard RE, Magin RL, Frizzell LA, Cain CA (1982) An annular focus ultrasonic lens for local hyperthermia treatment of small tumors. Ultrasound Med Biol 8: 177–184

    PubMed  CAS  Google Scholar 

  • Benkeser PJ, Frizzell LA, Ocheltree KB, Cain CA (1987) A tapered phased array ultrasound transducer for hyperthermia treatment IEEE Trans Ultrason Ferroelectr Freq Control UFFC 34: 446–453

    CAS  Google Scholar 

  • Billard B, Hynynen K, Roemer RB (1988) Induction of perfusion independent thermal exposure. Proc 5th Int Symp Hyperthermic Oncology, Kyoto, Japan, pp 713–714

    Google Scholar 

  • Bjorno L (1986) Characterization of biological media by means of their nonlinearity. Ultrasonics 24: 254–259

    PubMed  CAS  Google Scholar 

  • Britt RH, Pounds DW, Lyons BE (1984) Feasibility of treating malignant brain tumors with focused ultrasound. Prog Exp Tumor Res 28: 232–245

    PubMed  CAS  Google Scholar 

  • Bowman FH (1982) Heat transfer mechanisms and thermal dosimetry. Natl Cancer Inst Monogr 61: 437–445

    PubMed  CAS  Google Scholar 

  • Burov AK (1956) High intensity ultrasonic oscillation for the treatment of malignant tumors in animals and man. Dokl Akad Nauk SSSR 106: 239–241

    Google Scholar 

  • Burov AK, Andreevskaya GD (1956) The effect of ultra-acoustic oscillation of high intensity on malignant tumors in animals and man. Dokl Akad Nauk SSSR 106: 445–448

    Google Scholar 

  • Cain CA, Umemura S-A (1986) Concentric-ring and sector vortex phased array applicators for ultrasound hyperthermia therapy. IEEE Trans Microwave Theory Tech MTT 34: 542–551

    Google Scholar 

  • Cain CA, Umemura S, Ibbini M, Ebbini E (1987) Ultrasound phased array hyperthermia applicators. In: Proceedings of the 9th IEEE Engineering in Medicine and Biology Society meeting, pp 1640–1641. IEEE Catalog No 87CH2513–0

    Google Scholar 

  • Calderon C, Vilkomerson D, Mezrich R, Etzold KF, Kingsley B, Haskin M (1976) Differences in the attenuation of ultrasound by normal, benign, and malignant breast tissue. J Clin Ultrasound 4: 249–254

    PubMed  CAS  Google Scholar 

  • Carstensen EL (1987) Acoustic cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol 13: 597–606

    PubMed  CAS  Google Scholar 

  • Carstensen EL, Muir TG (1986) The role of nonlinear acoustics in biomedical ultrasound. In: Greenleaf JF (ed) Tissue characterization with ultrasound, vol 1. CRC, Boca Raton, pp 57–79

    Google Scholar 

  • Chan AK, Sigelmann RA, Guy AW (1974) Calculations of therapeutic heat generated by ultrasound in fat-musclebone layers. IEEE Trans Biomed Eng BME 21: 280–284

    CAS  Google Scholar 

  • Chin RB, Madsen EL, Zagzebski JA, Frank GR (1986) Experimental tests of computed time-dependent temperature distributions during ultrasonic heating. Program and abstracts of IEEE 1986 Ultrasonic Symp, p 150

    Google Scholar 

  • Chivers RC, Parry RJ (1978) Ultrasonic velocity and attenuation in mammalian tissues. J Acoust Soc Am 63: 940–953

    PubMed  CAS  Google Scholar 

  • Clarke PR, Hill CR, Adams K (1970) Synergism between ultrasound and x-rays in tumor therapy. Br J Radiol 43: 97–99

    PubMed  CAS  Google Scholar 

  • Coleman DJ, Lizzi FL, Burgess SEP, Silverman RH, Smith ME, Driller J, Rosado A, Ellsworth RM, Haik BG, Abrahamson DH, McCornick B (1986) Ultrasonic hyperthermia and radiation in the management of intraocular malignant melanoma. Am J Ophthalmol 101: 635–642

    PubMed  CAS  Google Scholar 

  • Cook BD (1977) Ultrasonic radiation determination by optical methods. In: Hazzard DG, Litz ML (eds) Symposium on biological effects and characterizations of ultrasound sources. HEW publication (FDA) 78–8048. United States Department of Health, Education and Welfare, Rockville, MD, pp 99–105

    Google Scholar 

  • Corry PM, Barlogie B, Tilchen EJ, Armour EP (1982) Ultrasound induced hyperthermia for the treatment of human superficial tumors. Int J Radiat Oncol Biol Phys 8: 1225–1229

    PubMed  CAS  Google Scholar 

  • Coughlin CT, Colacchio T, Crichlow R, Ryan T, Strohbehn J (1987) Ultrasound-induced intraoperative hyperthermia. Proceedings of the 35th annual meeting of the Radiation Research Society, Atlanta, p 16

    Google Scholar 

  • Das H, Lele PP (1984) Design of a power modulator for control of tumor temperature. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 707–714

    Google Scholar 

  • Davis BJ, Lele PP (1987) Bone-pain during hyperthermia by ultrasound. Proceedings of the 35th annual meeting of the Radiation Research Society, Atlanta, p 11

    Google Scholar 

  • Diederich C, Hynynen K (1987) Induction of hyperthermia using an intracavitary ultrasonic applicator. Proceedings of the IEEE Ultrasonic Symp IEEE Catalog No 87CH2492–7, pp 871–874

    Google Scholar 

  • Diederich C, Hynynen K (1989a) Induction of hyperthermia using an intracavitary multi-element ultrasonic applicator. IEEE Trans Biomedical Engineering 36: 432–438

    CAS  Google Scholar 

  • Diederich C, Hynynen K (1989b) The feasibility of intracavitary ultrasound hyperthermia using an electrically focussed multielement array. Proc 37th annual meeting of the Radiation Research Society and 9th annual meeting of the North American Hyperthermia Group, Seattle, Washington, p 9

    Google Scholar 

  • Do-Huun JP, Hartemann P (1982) Deep and local heating induced by an ultrasound phased array transducer. Proceedings of the IEEE Ultrasonic Symp 735–738

    Google Scholar 

  • Dunn F (1976) Ultrasonic attenuation, absorption, and velocity in tissues and organs. In: Linzer M (ed) Ultrasonic tissue characterization. NBS special publication no 453. NBS, Washington, pp 21–28

    Google Scholar 

  • Dunn F, Averbuch J, O’Brien WD (1977) A primary method for determination of ultrasonic intensity with elastic sphere radiometer. Acoustica 38: 58–61

    Google Scholar 

  • Dunn F, Brady JK (1973) Absorption of ultrasound in biological media. Biophysics 18: 1128–1132

    Google Scholar 

  • Dyer HJ (1972) Structural effect of ultrasound on the cell. In: Reid JM, Sikov MR (eds) Interaction of ultrasound and biological tissues. DHEW publication (FDH) 73–8008. United States Department of Health, Education and Welfare, Rockville, MD, pp 73–75

    Google Scholar 

  • Dyson M, Pond JB, Woodward B, Broadbent J (1974) The production of blood cell stasis and endothelial damage in the blood vessels of chick embryos treated with ultrasound in a standing wave field. Ultrasound Med Biol 1: 133–148

    PubMed  CAS  Google Scholar 

  • Ebbini ES, Umemura S-I, Ibbini M, Cain C (1988) A cylindrical-section ultrasound phased array applicator for hyperthermia cancer therapy. IEEE Trans Ultrason Ferroelectr Freq Control 35: 561–572

    PubMed  CAS  Google Scholar 

  • Edmonds PD, Ross WC, Lee ER, Fessenden P (1985) Spatial distributions of heating by ultrasound transducers in clinical use, indicated in a tissue-equivalent phantom. Proceedings of the IEEE Ultrasonic Symp, pp 908–912

    Google Scholar 

  • Edwards PL, Jarzynski J (1980) Use of a microsphere probe for pressure field measurements in the megahertz frequency range. J Acoust Soc Am 68: 356–359

    Google Scholar 

  • Fessenden P, Lee ER, Anderson TL, Strohbehn JW, Meyer JL, Samulski TV, Marmor JR (1984) Experience with a multitransducer ultrasound system for localized hyperthermia of deep tissues. IEEE Trans Biomed Eng BME 31: 126–135

    CAS  Google Scholar 

  • Fessenden P, Meyer JL, Valdagni R, Lee ER, Samulski TV, Kapp DS, Bagshaw MA (1985) Analysis of deep hyperthermia treatments using six ultrasound transducers in a fixed frequency/fixed geometry configuration. In: Proceedings of the Annual Meeting of the Radiation Research Society, Los Angeles, California, p 15

    Google Scholar 

  • Foster FS, Hunt JW (1980) The focussing of ultrasound beams through human tissue. Acoust Imaging 8: 709–718

    Google Scholar 

  • Frizzell LA, Carstensen E (1976) Shear properties of mammalian tissues at low megahertz frequencies. J Acoust Soc Am 60: 1409–1411

    PubMed  CAS  Google Scholar 

  • Frizzell LA, Lee CS, Aschenbach PD, Borrelli MJ, Morimoto RS, Dunn F (1983) Involvement of ultrasonically induced cavitation in the production of hind limb paralysis of the mouse neonate. J Acoust Soc Am 74: 1062–1065

    PubMed  CAS  Google Scholar 

  • Frizzell LA, Miller DL, Nyborg WL (1986) Ultrasonically induced intravascular streaming and thrombus formation adjacent to a micropipette. Ultrasound Med Biol 12: 217–221

    PubMed  CAS  Google Scholar 

  • Fry FJ (1965) Recent developments in ultrasound at biophysical research laboratory and their application to basic problems in biology and medicine. In: Kelly E (ed) Ultrasound energy. University of Illinois Press, Urbana, pp 202–228

    Google Scholar 

  • Fry WJ, Dunn F (1962) Ultrasound: analysis and experimental methods in biological research. In: Nastuk WM (ed) Physical techniques in biological research, vol 4. Special methods. Academic, New York, pp 261–325

    Google Scholar 

  • Fry WJ, Fry RB (1954a) Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes — theory. J Acoust Soc Am 26: 294–310

    Google Scholar 

  • Fry WJ, Fry RB (1954b) Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes — experiments. J Acoust Soc Am 26: 311–317

    Google Scholar 

  • Fry FJ, Johnson LK (1978) Tumor irradiation with intense ultrasound. Ultrasound Med Biol 4: 337–341

    PubMed  CAS  Google Scholar 

  • Goss SA, Fry FJ (1981) Nonlinear acoustic behavior in focussed ultrasonic fields: observations of intensity dependent absorption in biological tissue. IEEE Trans Sonics Ultrason SU 28: 21–26

    Google Scholar 

  • Goss SA, Johnson RL, Dunn F (1978) Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 64: 423–457

    PubMed  CAS  Google Scholar 

  • Goss SA, Frizzell LA, Dunn F (1979) Ultrasonic absorption and attenuation of high frequency sound in mammalian tissues. Ultrasound Med Biol 5: 181–186

    PubMed  CAS  Google Scholar 

  • Goss SA, Johnson RL, Dunn F (1980) Compilation of empirical ultrasonic properties of mammalian tissues. II. J Acoust Soc Am 68: 93–108

    CAS  Google Scholar 

  • Guthkelch AN, Hynynen K, Shimm D, Stea B, Cassady JR, Roemer RB (1989) Treatment of malignant brain tumors with focussed ultrasound hyperthermia and radiation: experiences with a phase I trial. J Neurosurgery (submitted)

    Google Scholar 

  • Hahn GM (1982) Does the mode of heat induction modify drug anti-tumor effects? Br J Cancer 45 (Suppl V): 238–242

    Google Scholar 

  • Haran ME (1977) Ultrasonic acousto-optic measurement techniques. In: Symposium on biological effects and characterization of ultrasound sources. HEW publication (FDA) 78–8044. United States Department of Health, Education, and Welfare, Rockville, MD, Hazzard DG, Litz ML (eds) pp 90–98

    Google Scholar 

  • Heimburger RF (1985) Ultrasound augmentation of central nervous system tumor therapy. Indiana Med 78: 469–476

    PubMed  CAS  Google Scholar 

  • Hill CR (1972) Ultrasonic exposure thresholds for changes in cells and tissues. J Acoust Soc Am 52: 667–672

    Google Scholar 

  • Holmes KR, Ryan W, Weinstein P, Chen MM (1984) A fixation technique for organs to be used as perfused tissue phantoms in bioheat transfer studies. 1984 Advances in Bioengineering, Spiker RL (ed) ( New York: American Society of Mechanical Engineers ), 9–10

    Google Scholar 

  • Horvath J (1944) Ultraschallwirkung beim menschlichen Sarkom. Strahlentherapie 75: 119

    Google Scholar 

  • Hueter TF, Bolt RH (1955) Sonics; techniques for the use of sound and ultrasound in engineering and science. Wiley, New York

    Google Scholar 

  • Hunt JW (1985) Review of deep heating using ultrasonic beams. Proceedings of the 33th annual meeting of the Radiation Research Society, Los Angeles, California, p 16

    Google Scholar 

  • Hynynen K (1987) Demonstration of enhanced temperature elevation due to nonlinear propagation of focussed ultrasound in dog’s thigh in vivo. Ultrasound Med Biol 13: 85–91

    PubMed  CAS  Google Scholar 

  • Hynynen K, DeYoung D (1988) Temperature elevation at muscle-bone interface during scanned, focussed ultrasound hyperthermia. Int J Hyperthermia 4: 267–279

    PubMed  CAS  Google Scholar 

  • Hynynen K, Watmough DJ, Mallard JR (1981) Design of ultrasonic transducers for local hyperthermia. Ultrasound Med Biol 7: 397–402

    PubMed  CAS  Google Scholar 

  • Hynynen K, Watmough DJ, Mallard JR, Fuller M (1983a) The construction and assessment of lenses for local treatment of malignant tumors by ultrasound. Ultrasound Med Biol 9: 33–38

    PubMed  CAS  Google Scholar 

  • Hynynen K, Watmough DJ, Shammari M, Wilmot G, Murthy MSN, Mallard JR, Fuller M, Sarkar T (1983b) A clinical hyperthermia unit utilizing an array of seven focussed ultrasonic transducers. In: Proceedings of the IEEE Ultrasonic Symp, pp 816–821

    Google Scholar 

  • Hynynen K, Roemer R, Moros E, Johnson C, Anhalt D (1986) The effect of scanning speed on temperature and equivalent thermal exposure distributions during ultrasound hyperthermia in vivo. IEEE Trans Microwave Theory Tech MTT 34: 552–559

    Google Scholar 

  • Hynynen K, Roemer R, Anhalt D, Johnson C, Xu ZX, Swindell W, Cetas TC (1987a) A scanned, focussed, multiple transducer ultrasonic system for localized hyperthermia treatments. Int J Hyperthermia 3: 21–35

    PubMed  CAS  Google Scholar 

  • Hynynen K, Shimm D, Roemer RB, Anhalt D, Cassady JR (1987b) Temperature distributions during clinical ultrasound hyperthermia. Proceedings of the 9th annual conference of IEEE Engineering in Medicine and Biology Society, Boston, Nov 1987. IEEE, New York, pp 1644–1645

    Google Scholar 

  • Jain RK, Ward-Hardley K (1984) Tumor blood flow — characterization, modification and role in hyperthermia. IEEE Trans Sonics Ultrason SU 31: 504–526

    Google Scholar 

  • Johnson C, Kress R, Roemer RB, Hynynen K (1987) Multipoint feedback control system for scanned, focussed ultrasound hyperthermia. Proc 35th annual meeting of Radiation Research Society, Atlanta, Georgia, p 12

    Google Scholar 

  • Johnson SA, Christensen DA, Johnson CC, Greenleaf JF, Rajagopalan B (1977) Non-intrusive measurement of microwave and ultrasound induced hyperthermia by acoustic temperature tomography. Proceedings of the IEEE Ultrasonic Symp, pp 977–982

    Google Scholar 

  • Ibbini MS, Cain CA (1989) A field conjugation method for direct synthesis of hyperthermia phased array heating patterns. IEEE Trans Ultrason Ferroelectr Freq Control 36: 3–9

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Uchida R, Tanaka K, Wagai T (1957) Early diagnosis through ultrasonics. J Acoust Soc Am 29: 824–833

    Google Scholar 

  • Kishi M, Mishima T, Itakura T, Tsuda K, Oka M (1975) Experimental studies of effects of intense ultrasound on implantable murine glioma. In: Proceedings of the 2nd European congress on ultrasonics in medicine. Exerpta Medica, Amsterdam, pp 28–33

    Google Scholar 

  • Kossoff G (1979) Analysis of focusing action of spherically curved transducers. Ultrasound Med Biol 5: 359–365

    PubMed  CAS  Google Scholar 

  • Kremkau FW (1979) Cancer therapy with ultrasound: a historical review. J Clin Ultrasound 7: 287–300

    PubMed  CAS  Google Scholar 

  • Kress RL (1987) Adaptive model — following control for hyperthermia treatment systems. Ph D thesis, Department of Aerospace and Mechanical Engineering, University of Arizona

    Google Scholar 

  • Law WK, Frizzell LA, Dunn F (1985) Determination of the nonlinearity parameter B/A of biological media. Ultrasound Med Biol 11: 307–318

    PubMed  CAS  Google Scholar 

  • Lehmann JF (1965) Ultrasound therapy. In: Licht S (ed) Thera- peutic heat and cold. Licht, New Haven, pp 321–386

    Google Scholar 

  • Lehmann JF, deLateur BJ, Silverman DR (1966) Selective heating effects of ultrasound in human beings. Arch Phys Med Rehabil 47: 331–339

    PubMed  CAS  Google Scholar 

  • Lehmann JF, deLateur BJ, Warren CG, Stonebridge JS (1967) Heating produced by ultrasound in bone and soft tissue. Arch Phys Med Rehabil 48: 397–401

    PubMed  CAS  Google Scholar 

  • Lele PP (1975) Hyperthermia by ultrasound. In: Proceedings of the international symposium on cancer therapy by hyperthermia and radiation. Washington, April 28–30, pp 168–178

    Google Scholar 

  • Lele PP (1977) Thresholds and mechanisms of ultrasonic damage to “organized” animal tissues. In: Hazzard DG, Litz ML (eds) Symposium on biological effects and characterizations of ultrasound sources. DHEW publication FDA 78–8048. United States Department of Health, Education and Welfare, Rockville, MD, pp 224–239

    Google Scholar 

  • Lele PP (1981) An annular-focus ultrasonic lens for production of uniform hyperthermia in cancer therapy. Ultrasound Med Biol 7: 191–193

    Google Scholar 

  • Lele PP (1983) Physical aspects and clinical studies with ultrasound hyperthermia. In: Storm FC (ed) Hyperthermia in cancer therapy. Hall Medical, Boston, pp 333–367

    Google Scholar 

  • Lele PP (1984) Ultrasound: is it the modality of choice for controlled, localized heating of deep tumors? In: Overgaard J (ed) Hyperthermic oncology 1984, vol 2. Taylor and Francis, London, pp 129–154

    Google Scholar 

  • Lele PP (1986) Rationale, technique and clinical results with scanned focussed ultrasound (SIMFU) systems. Proceedings of the 8th annual conference of IEEE Engineering in Medicine and Biology Society. IEEE, New York, pp 1435–1440

    Google Scholar 

  • Lele PP, Goddard J (1987) Optimizing insonication parameters in therapy planning for deep heating by SIMFU. Proceedings of the 9th annual conference of IEEE Engineering in Medicine and Biology Society, Boston, Nov 1987. IEEE, New York, pp 1650–1651

    Google Scholar 

  • Lele PP, Parker KJ (1982) Temperature distributions in tissues during local hyperthermia by stationary or steered beams of unfocussed or focussed ultrasound. Br J Cancer 45 (Suppl V): 108–121

    Google Scholar 

  • Li GC, Hahn GM, Tolmach LJ (1977) Cellular interaction by ultrasound. Nature 267: 163–165

    PubMed  CAS  Google Scholar 

  • Lizzi FL, Coleman DJ, Driller J, Ostromogilsky M, Chang S, Greenall P (1984) Ultrasonic hyperthermia for ophthalmic therapy. IEEE Trans Sonics Ultrason SU 31: 473–481

    Google Scholar 

  • Lyons M, Parker KJ (1988) Absorption and Attenuation in Soft Tissues II — Experimental Results. IEEE Trans Ultrason Ferroldectr Freq Control 35: 511–521

    CAS  Google Scholar 

  • Madsen EL, Zagzebski JA, Banjavie RA, Jutila RE (1978) Tissue mimicking materials for ultrasound phantoms. Med Phys 5: 391–394

    PubMed  CAS  Google Scholar 

  • Madsen EL, Goodsitt MM, Zagzebski JA (1981) Continuous wave generated by focussed radiators. J Acoust Soc Am 70: 1508–1517

    Google Scholar 

  • Madsen EL, Zagzebski JA, Frank GR (1982) Oil-in-gelatine dispersion for use as ultrasonically tissue mimicking materials. Ultrasound Med Biol 8: 277–287

    PubMed  CAS  Google Scholar 

  • Madsen EL, Sathoff HJ, Zagzebski JA (1983) Ultrasonic shear wave properties of soft tissues and tissuelike materials. J Acoust Soc Am 74: 1346–1355

    PubMed  CAS  Google Scholar 

  • Marchal C, Bey P, Metz R, Gaulard ML, Robert J (1982) Treatment of superficial human cancerous nodules by local ultrasound hyperthermia. Br J Cancer 45 (Suppl V): 243–245

    Google Scholar 

  • Marmor JB, Nagar C, Hahn GM (1977) Tumor regression and immune recognition after localized ultrasound heating. Radiat Res 70: 633

    Google Scholar 

  • Marmor JB, Pounds D, Hahn N, Hahn GM (1978) Treating spontaneous tumors in dogs and cats by ultrasound-induced hyperthermia. Int J Radiat Oncol Biol Phys 4: 967–973

    PubMed  CAS  Google Scholar 

  • Marmor JB, Pounds D, Postic TB, Hahn GM (1979) Treatment of superficial human neoplasms by local hyperthermia induced by ultrasound. Cancer 43: 188–197

    PubMed  CAS  Google Scholar 

  • Martin CJ, Law ANR (1983) Design of thermistor probes for measurement of ultrasound intensity distributions. Ultrasonics 21: 85–90

    Google Scholar 

  • Martin CJ, Pratt BM, Watmough DJ (1983) Observations of ultrasound-induced effects in the fish Xiphophorous macalatus. Ultrasound Med Biol 9: 177–183

    PubMed  CAS  Google Scholar 

  • Martin CJ, Hynynen K, Watmough DJ (1984) Measurement of ultrasound energy density distributions in vivo. Ultrasound Med Biol 10: 701–708

    PubMed  CAS  Google Scholar 

  • Mason WP (1950) Piezoelectric crystals and their application to ultrasonics. Van Nostrand, Princeton

    Google Scholar 

  • Mayer WG (1965) Energy partition of ultrasonic waves at flat boundaries. Ultrasonics 3: 62–68

    Google Scholar 

  • Moros EG, Roemer RB, Hynynen K (1988) Simulations of scanned focussed ultrasound hyperthermia: the effect of scanning speed and pattern. IEEE Trans Ultrason Ferroelectr Freq Control 35: 552–560

    PubMed  CAS  Google Scholar 

  • Moros EG, Roemer RB, Hynynen K (1989) Pre-focal plane high temperature regions induced by scanning focussed ultrasound beams. Int J Hyperthermia (in print)

    Google Scholar 

  • Mortimer AJ (1982) Physical characteristics of ultrasound. In: Repacholi MH, Benwell DA (eds) Essentials of medical ultrasound. Humana, Clifton

    Google Scholar 

  • Munro P, Hill RP, Hunt JW (1982) The development of improved ultrasound heaters suitable for superficial tissue heating. Med Phys 9: 888–897

    PubMed  CAS  Google Scholar 

  • Nakahara W, Kabayashi R (1934) Biological effects of short exposure to supersonic waves: local effects on the skin. Jpn J Exp Med 12: 137

    Google Scholar 

  • NCRP (1983) Biological effects of ultrasound: mechanisms and clinical implications. Report no 74. National Council on Radiation Protection and Measurements, Bethesda, MD

    Google Scholar 

  • Nelson PA, Herrick JF, Krusen FH (1950) Temperatures produced in bone marrow, bone and adjacent tissues by ultrasound diathermy. Arch Phys Med 31: 687–695

    PubMed  CAS  Google Scholar 

  • Nyborg WL (1981) Heat generation by ultrasound in a relaxing medium. J Acoust Soc Am 70: 310–312

    Google Scholar 

  • Nyborg WL, Ziskin MC (eds) (1985) Biological effects of ultrasound. Churchill Livingstone, New York (Clinics in diagnostic ultrasound, vol 16 )

    Google Scholar 

  • Ocheltree KB, Benkeser JP, Frizzell LA, Cain CA (1984) An ultrasound phased array applicator for hyperthermia. IEEE Trans Sonics Ultrason SU 31: 526–531

    Google Scholar 

  • Oka M (1960) Surgical application of high-intensity focused ultrasound. Clin All Round (Jpn) 13: 1514

    Google Scholar 

  • O’Neil HT (1949) Theory of focussing radiators. J Acoust Soc Am 21: 516–526

    Google Scholar 

  • Parker KJ (1983) The thermal pulse decay technique for measuring ultrasonic absorption coefficients. J Acoust Soc Am 74: 1356–1361

    Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Phys 1: 93–122

    CAS  Google Scholar 

  • Ristic VM (1983) Principles of acoustic devices. Wiley, New York

    Google Scholar 

  • Robinson TC, Lele PP (1972) An analysis of lesion development in the brain and in plastics by high-intensity focussed ultrasound at low-megahertz frequencies. J Acoust Soc Am 51: 1333–1351

    PubMed  CAS  Google Scholar 

  • Roemer RB, Hynynen K, Johnson C, Kress R (1986) Feedback control and optimization of hyperthermia heating patterns: present status and future needs. Proceedings of the 8th annual IEEE/EMBS meeting, pp 1496–1499

    Google Scholar 

  • Roemer RB, Swindell W, Clegg ST, Kress RL (1984) Simulation of focussed, scanned ultrasound heating of deep-seated tumors: the effect of blood perfusion. IEEE Trans Sonics Ultrason SU 31: 457–466

    Google Scholar 

  • Sehgal CM, Bahn RC, Greenleaf JF (1984) Measurement of the acoustic nonlinearity parameter B/A in human tissues by thermodynamic method. J Acoust Soc 76: 1023–1029

    CAS  Google Scholar 

  • Sehgal CM, Brown GM, Bohn RC, Greenleaf JF (1986) Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excised livers. Ultrasound Med Biol 12: 865–874

    PubMed  CAS  Google Scholar 

  • Seppi E, Shapiro E, Zitelli L, Henderson S, Wehlau A, Wu G, Dittmer C (1985) A large aperture ultrasonic array system for hyperthermia treatment of deep-seated tumors. Proceedings of the IEEE Ultrasonic Symp, pp 942–949

    Google Scholar 

  • Shimm DS, Hynynen K, Anhalt DP, Roemer RB, Cassady JR (1988) Scanned focussed ultrasound hyperthermia: preliminary clinical results. Int J Radiat Oncol Biol Phys 15: 1203–1208

    PubMed  CAS  Google Scholar 

  • Sommer FG, Pounds D (1982) Transient cavitation in tissues during ultrasonically induced hyperthermia. Med Phys 9: 1–3

    PubMed  CAS  Google Scholar 

  • Stewart HF (1982) Ultrasonic measurement techniques and equipment output levels. In: Repacholi MH, Benwell DA (eds) Essentials of medical ultrasound. Humana, Clifton, NJ, pp 77–116

    Google Scholar 

  • Stockdale HR, Hill CR (1976) Use of sphere radiometer to measure ultrasonic beam power. Ultrasound Med Biol 2: 219–220

    PubMed  CAS  Google Scholar 

  • Swindell W (1985) A theoretical study of nonlinear effects with focussed ultrasound in tissues: an acoustic Bragg peak. Ultrasound Med Biol 11: 121–130

    PubMed  CAS  Google Scholar 

  • Swindell W (1986) Ultrasonic hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 288–325

    Google Scholar 

  • Swindell W, Roemer RB, Clegg ST (1982) Temperature distributions caused by dynamic scanning of focussed ultrasound transducers. Proceedings of the IEEE Ultrasonic Symp (IEEE No 0090–5607), pp 745–749

    Google Scholar 

  • Szent-Gorgyi A (1933) Chemical and biological effects of ultrasonic radiation. Nature 131: 278

    Google Scholar 

  • ter Haar GR, Stratford IJ, Hill CR (1980) Ultrasonic irradiation of mammalian cells in vitro at hyperthermic temperatures. Br J Radiol 53: 784–789

    PubMed  Google Scholar 

  • ter Haar GR, Daniels S, Eastaugh KC, Hill CR (1982) Ultrasonically induced cavitation in vivo. Br J Cancer 45 (Suppl V): 151–155

    Google Scholar 

  • Tobias J, Hynynen K, Roemer R, Guthkelch AN, Fleisher AS, Shivley J (1987) An ultrasound window to perform scanned focussed ultrasound hyperthermia treatments of brain. Med Phys 14: 228–234

    PubMed  CAS  Google Scholar 

  • Underwood HR, Burdette EC, Ocheltree KB, Magin RL (1987) A multielement ultrasonic hyperthermia applicator with independent element control. Int J Hyperthermia 3: 257–267

    PubMed  CAS  Google Scholar 

  • Walker DCB, Lumb RF (1964) Piezoelectric probes for immer- sion ultrasonic testing. Appl Mater Res 3: 176–183

    Google Scholar 

  • Washington ABG (1961) Design of ultrasound probes. Br J Non Destr Test 3: 56–63

    Google Scholar 

  • Wells PNT (1969) Physical principles of ultrasonic diagnosis. Academic, London

    Google Scholar 

  • Wells PNT (1977) Biomedical ultrasonics. Academic, London

    Google Scholar 

  • Westermark F (1898) Über die Behandlung des ulcerireden Cervixcarcinomas mittels konstanter Wärme. Zentralbl Gynaekol 22: 1335–1339

    Google Scholar 

  • Williams AR (1983) Ultrasound: biological effects and potential hazards. Academic, London

    Google Scholar 

  • Woeber K (1965) The effect of ultrasound in the treatment of cancer. In: Kelly E (ed) Ultrasonic energy: Biological investigations and medical applications. University of Illinois Press, Urbana, pp 135–149

    Google Scholar 

  • Yoshioka K, Oka M (1965) Technical developments of focussed ultrasound and its biological and surgical applications in Japan. In: Kelly E (ed) Ultrasonic energy: biological investigations and medical applications. University of Illinois Press, Urbana, pp 190–201

    Google Scholar 

  • Zemanek J (1971) Beam behavior within the nearfield of a vibrating piston. J Acoust Soc Am 49: 181–191

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hynynen, K. (1990). Biophysics and Technology of Ultrasound Hyperthermia. In: Gautherie, M. (eds) Methods of External Hyperthermic Heating. Clinical Thermology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74633-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74633-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74635-2

  • Online ISBN: 978-3-642-74633-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics