Skip to main content

Mutagen-Mutation Equilibria in Evolution

  • Chapter
Advances in Mutagenesis Research

Part of the book series: Advances in Mutagenesis Research ((MUTAGENESIS,volume 1))

Abstract

Mutations are double-faced like Janus. They are most often detrimental to their carriers — they also represent the ultimate source of genetic variability and, hence, of evolution. This antagonism requires a delicate balance. It may be achieved by one or more of three different strategies:

  1. 1.

    Mutations do not entirely occur at random in the genome. This is evident for specific types of somatic mutations in mammals (Baltimore 1981; Golub 1987; Meyer et al. 1986) and for transposon-induction of mutations in the germ line (Engels and Preston 1984; O’Hare and Rubin 1983; Rubin et al. 1982; see also Campbell 1983, and Syvanen 1984).

  2. 2.

    Mutation rates are adjusted to evolutionary requirements. This has since long been discussed controversially (Benado et al. 1976; Biémont et al. 1987; Chao et al. 1983; Cox and Gibson 1974; Dobzhansky et al. 1952; Gillespie 1981; Holsinger and Feldman 1983; Ives 1950; Nöthel 1983, 1987; Sturtevant 1937) but seems more likely in view of the surprising mixture of error-proof and error-prone (i.e. mutagenic) mechanisms of DNA repair (Kimball 1987).

  3. 3.

    In diploids, the genetic load due to recessive variants is not a mutational load that has to be avoided in order to gain optimal population fitness, but mainly is a tolerable “segregational noise” produced by selectively favoured heterozygotes according to the “balance-hypothesis”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baltimore D (1981) Somatic mutation gains its place among the generators of diversity. Cell 26: 295–296

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva ES, Pasyukova EG, Gvozdev VA, Ilyin YV, Kaidanov LZ (1982) Transposition of mobile dispersed genes in Drosophila melanogaster and fitness of stocks. Mol Gen Genet 185: 324–328

    Article  PubMed  CAS  Google Scholar 

  • Benado MB, Ayala FJ, Green MM (1976) Evolution of experimental “mutator” populations of Drosophila melanogaster. Genetics 82: 43–52

    PubMed  CAS  Google Scholar 

  • Biémont C (1986) Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster.Chromosoma (Berl) 93: 393–397

    Google Scholar 

  • Biémont C, Aouar A (1987) Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58: 39–47

    Article  Google Scholar 

  • Biémont C, Aouar A, Arnault C (1987) Genome reshuffling of the copia element in an inbredline of Drosophila melanogaster. Nature (Lond) 329: 742–744

    Article  Google Scholar 

  • Bingham PM, Kidwell MG, Rubin GM (1982) The molecular basis of P-M hybrid dysgenesis: The role of the P element, a Pf-strain-specific transposon family. Cell 29: 995–1004

    Google Scholar 

  • Campbell A (1983) Transposons and their evolutionary significance. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, pp 258–279

    Google Scholar 

  • Chao L, Vargas C, Spear BB, Cox EC (1983) Transposable elements as mutator genes in evolution. Nature (Lond) 303: 633–635

    Article  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1983) The population dynamics of transposable elements. Genet Res 42: 1–27

    Article  Google Scholar 

  • Cox EC, Gibson TC (1974) Selection for high mutation rates in chemostats. Genetics 77: 169– 184

    Google Scholar 

  • Dobzhansky T, Spassky B, Spassky N (1952) A comparative study of mutation rates in two ecologically diverse species of Drosophila. Genetics 37: 650–664

    PubMed  CAS  Google Scholar 

  • Doerjer F, Bedell MA, Oesch F (1984) DNA adducts and their biological relevance. In: Obe G (ed) Mutations in man. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Engels WR (1984) A transacting product needed for P factor transposition in Drosophila. Science 226: 1194–1196

    Article  PubMed  CAS  Google Scholar 

  • Engels WR, Preston CR (1984) Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107: 657–678

    PubMed  CAS  Google Scholar 

  • Fitzpatrick BJ, Sved JA (1986) High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genet Res 48: 89–94

    Article  Google Scholar 

  • Foster PL, Davis EF (1987) Loss of an apurinic/apyrimidinic site endonuclease increases the mutagenicity of N-methyl-N’-nitro-N-nitrosoguanidine to Escherichia coli. Proc Natl Acad Sci USA 84: 2891–2895

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova TI, Mizrokhi LJ, Georgiev GP (1984) Transposition bursts in genetically unstable Drosophila melanogaster. Nature (Lond) 309: 714–716

    Article  Google Scholar 

  • Gerasimova TI, Matjunina LV, Mizrokhi LJ, Georgiev GP (1985) Successive transposition explosions in Drosophila melanogaster and reverse transpositions of mobile dispersed genetic elements. EMBO J 4: 3773–3779

    PubMed  CAS  Google Scholar 

  • Gillespie JH (1981) Mutation modification in a random environment. Evolution 35: 468–476

    Article  Google Scholar 

  • Ginzburg LR, Bingham PM, Yoo S (1984) On the theory of speciation induced by transposable elements. Genetics 107: 331–341

    PubMed  CAS  Google Scholar 

  • Golub ES (1987) Somatic mutation: diversity and regulation of the immune repertoire. Cell 48: 723–724

    Article  PubMed  CAS  Google Scholar 

  • Holsinger KE, Feldman MW (1983) Modifiers of mutation rate: Evolutionary optimum with complete selfing. Proc Natl Acad Sci USA 80: 6732–6734

    Google Scholar 

  • Ives PT (1950) The importance of mutation rate genes in evolution. Evolution 4: 236–252

    Article  Google Scholar 

  • Kidwell MG, Kidwell JF, Ives PT (1977a) Spontaneous non-reciprocal mutation and sterility in strain crosses of Drosophile melanogaster. Mutat Res 42: 89–98

    Article  Google Scholar 

  • Kidwell MG, Kidwell JF, Sved JA (1977b) Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility, and male recombination. Genetics 86: 813–833

    PubMed  CAS  Google Scholar 

  • Kimball RF (1987) The development of ideas about the effect of DNA repair on the induction of gene mutations and chromosomal aberrations by radiation and by chemicals. Mutat Res 186: 1–34

    PubMed  CAS  Google Scholar 

  • King RC (1970) Ovarian development in Drosophila melanogaster. Academic Press, London

    Google Scholar 

  • Lindsley DL, Grell EH (1968) Genetic variations of Drosophila melanogaster. Carnegie Inst Wash Publ No 627

    Google Scholar 

  • Loeb LA, Preston BD (1986) Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet 20: 201–230

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC (1986) Transposable element-induced fitness mutations in Drosophila melanogaster. Genet Res 48: 77–87

    Article  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226: 792–801

    Article  PubMed  CAS  Google Scholar 

  • Meyer J, Jäck HM, Ellis N, Wabl M (1986) High rate of somatic point mutation in vitro in and near the variable-region segment of an immunoglobulin heavy chain gene. Proc Natl Acad Sci USA 83: 6950–6953

    Article  PubMed  CAS  Google Scholar 

  • Mukai T (1964) The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19

    PubMed  CAS  Google Scholar 

  • Mukai T (1979) Polygenic mutation. In: Thompson JN, Thoday JM (eds) Quantitative genetic variation, Academic Press, Lond, pp 177–196

    Google Scholar 

  • Mukai T, Chigusa SI, Mettler LE, Crow JF (1972) Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 335–355

    PubMed  CAS  Google Scholar 

  • Nöthel H (1969) Genetische Konstitution und Strahlenempfindlichkeit. Habilitationsschrift, Freie Universität Berlin

    Google Scholar 

  • Nöthel H (1983) Investigations on radiosensitive and radioresistant populations of Drosophila melanogaster XVI. Adaptation to the mutagenic effects of X-rays in several experimental populations with irradiation histories. Mutat Res 111: 325–340

    Article  PubMed  Google Scholar 

  • Nöthel H (1987) Adaptation of Drosphila melanogaster populations to high mutation pressure: evolutionary adjustment of mutation rates. Proc Natl Acad Sci USA 84: 1045–1049

    Article  PubMed  Google Scholar 

  • Nöthel H, Weber M (1976) Investigations on radiosensitive and radioresistant populations of Drosophily melanogaster VII. High relative radioresistance to the induction of sex-linked recessive lethals in stage-7 oocytes of RÖ I4. Mutat Res 36: 245–248

    Article  PubMed  Google Scholar 

  • O’Hare K, Rubin GM (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanosgaster genome. Cell 34: 25–35

    Article  PubMed  Google Scholar 

  • Radman M, Wagner R (1986) Mismatch repair in Escherichia coli. Annu Rev Genet 20: 523–538

    Article  PubMed  CAS  Google Scholar 

  • Ramel C (1983) Polygenic effects and genetic changes affecting quantitative traits. Mutat Res 114: 107–116

    PubMed  CAS  Google Scholar 

  • Rio DC, Laski FA, Rubin GM (1986) Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell 44: 21–32

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Kidwell MG, Bingham PM (1982) The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29: 987–994

    Article  PubMed  CAS  Google Scholar 

  • Rusell WL, Hunsicker PR, Raymer GD, Steele MH, Stelzner KF, Thompson HM (1982) Dose-response curve for ethylnitrosourea-induced specificlocus mutations in mouse spermatogonia. Proc Natl Acad Sci USA 79: 3589–3591

    Article  Google Scholar 

  • Sankaranarayanan K, Sobels FH (1976) Radiation genetics. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila. Academic press, Lond, vol lc pp 1089–1250

    Google Scholar 

  • Sturtevant AH (1937) Essays on evolution. I. On the effects of selection on mutation rate. Q Rev Biol 12: 464–467

    Article  Google Scholar 

  • Syvanen M (1984) The evolutionary implications of mobile genetic elements. Annu Rev Genet 18: 271–293

    Article  PubMed  CAS  Google Scholar 

  • Voelker RA, Greenleaf AL, Gyurkovics H, Wisely GB, Huang SM, Searles LL (1984) Frequent imprecise excision among reversions of a P element-caused lethal mutation in Drosophila. Genetics 107: 279–294

    PubMed  CAS  Google Scholar 

  • Vogel E, Natarajan AT (1979) The relation between reaction kinetics and mutagenic action of mono-functional alkylating agents in higher eukayotic systems. I. Recessive lethal mutations and translocations in Drosophila. Mutat Res 62: 51–100

    Google Scholar 

  • Vogel EW, Dusenbery RL, Smith PD (1985) The relation between reaction kinetics and mutagenic action. IV. The effects of the excicion-defective mei-9L1 and mus (2)201m mutants on alkylation-induced genetic damage in Drosophila. Mutat Res 149: 193–207

    Article  PubMed  CAS  Google Scholar 

  • Williams LD, Shaw BR (1987) Protonated base pairs explain the ambiguous pairing properties of O6-methylguanine. Proc Natl Acad Sci USA 84: 1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Yarosh DB (1985) The role of 06-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat Res 145: 1–6

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nöthel, H. (1990). Mutagen-Mutation Equilibria in Evolution. In: Obe, G. (eds) Advances in Mutagenesis Research. Advances in Mutagenesis Research, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74955-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74955-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74957-5

  • Online ISBN: 978-3-642-74955-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics