Skip to main content

Lipid Composition and Nutritional Value of the Brown Tide Alga Aureococcus anophagefferens

  • Conference paper
Novel Phytoplankton Blooms

Part of the book series: Coastal and Estuarine Studies ((COASTAL,volume 35))

Abstract

Blooms of the small (ca. 2 μm diameter) coccoid chrysophyte, Aureococcus anophagefferens, first occurred in 1985 in several coastal embayments of the N.E. U.S., attaining cell densities on the order of 109 l-1 (Cosper et al., 1987; Sieburth et al., 1988). This species has not been previously described nor has its biochemical composition been determined. Biochemical analysis, particularly of this cell’s lipid components, is important for understanding its nutritional value for marine herbivores which may feed on it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackman, R.G., 1982. Fatty acid metabolism of bivalves. In: Biochemical and physiological approaches to shellfish nutrition. Proc. 2nd Int. Conf. Aquaculture Nutr., G.D. Pruder et al. (Eds.), World Mariculture Soc. Spec. Publ. No. 2, Louisiana State University, pp.358–375.

    Google Scholar 

  • Ackman, R.G. and R.D. Burgher. 1965. Cod liver oil fatty acids as secondary reference standards in the GLC of polyunsaturated fatty acids of animal origin. Analysis of a dermal oil of the Atlantic leatherback turtle. J. Am. Oil Chem. Soc. 42: 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Bligh, E.G. and W.M. Dyer, 1959. A rapid method of lipid extraction and purification. Can. J. Biochem. Physiol. 35: 911–917.

    Article  Google Scholar 

  • Bricelj, V.M. and S. Kuenstner. 1989. Effects of the “brown tide” on the feeding physiology, and growth of bay scallops and mussels. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”. Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.). Lecture Notes on Coastal and Estuarine Studies. Springer-Verlag, Berlin, pp. 593–511.

    Google Scholar 

  • Bricelj, V.M., J. Epp and R.E. Malouf. 1987. Intraspecific variation in reproductive and somatic growth cycles of bay scallops Argopecten irradians. Mar. Ecol. Prog. Ser. 36: 123–137.

    Google Scholar 

  • Chu, F.-L.E. and K.L. Webb. 1984. Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster, Crassostrea virginica. Lipids 19: 815–820.

    Article  CAS  Google Scholar 

  • Cohen, Z., A. Vonshak and A. Richmond. 1988. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J. Phycol. 24: 328–332.

    CAS  Google Scholar 

  • Cosper, E.M., W.C. Dennison, E.J. Carpenter, V.M. Bricelj, S.H. Kuenstner, D. Colflesh and M. Dewey. 1987. Recurrent and persistent brown tide blooms perturb coastal marine ecosystem. Estuaries 10: 284–290.

    Article  Google Scholar 

  • DeLong, E.F. and A.A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl. Env. Microbiol. 51: 730–737.

    Google Scholar 

  • Demort, C.L., R. Lowry, I. Tinsley and H.K. Phinney. 1972. The biochemical analysis of some estuarine phytoplankton species. I. Fatty acid composition. J. Phycol. 8: 211–216.

    Google Scholar 

  • Dobbs, F.C. and J.B. Guckert. 1988. Microbial food resources of the macrofaunal-deposit feeder Ptychodera bahamensis ( Hemichordata: Enteropneusta). Mar. Ecol. Prog. Ser. 45: 127–136.

    Google Scholar 

  • Enright, C.T., G.F. Newkirk, J.S. Craigie and J.D. Castell. 1986. Evaluation of phytoplankton as diets for juvenile Ostrea edulis. J. Exp. Mar. Biol. Ecol. 96: 1–13.

    Google Scholar 

  • Fisher, N.S. and R.P. Schwarzenbach. 1978. Fatty acid dynamics in Thalassiosira pseudonana (Bacillariophyceae): implications for physiological ecology. J. Phycol. 14: 143–150.

    Article  CAS  Google Scholar 

  • Fujii, M. and Y. Yone. 1976. Studies on the nutrition of Red Sea bream. XIII. Effect of dietary linolenic acid and w3 polyunsaturated fatty acids on growth and feed efficiency. Bull. J. Soc. Sci. Fish. 42: 583–588.

    Google Scholar 

  • Guckert, J.B., C.P. Antworth, P.D. Nichols and D.C. White. 1985. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. F.E.M.S. Microbiol. Ecol. 31: 147–158.

    Google Scholar 

  • Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine plankton diatoms I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.

    Google Scholar 

  • Harrington, G.W., D.H. Beach, J.E. Dunham, and G.G. Holz. 1970. The polyunsaturated fatty acids of marine dinoflagellates. J. Protozool. 17: 213–219.

    PubMed  CAS  Google Scholar 

  • Jones, D.A., A. Kanazawa and K. Ono. 1979. Studies on the nutritional requirements of the larval stages of Penaeus japonicus using microencapsulated diets. Mar. Biol 54: 261–267.

    Google Scholar 

  • Kates, M. 1964. Bacterial lipids. Adv. Lipid Res. 2: 17–90.

    Google Scholar 

  • Laing, I., S.D. Utting and R.W.S. Kilada. 1987. Interactive effect of diet and temperature on the growth of juvenile clams. J. Exp. Mar. Biol. Ecol. 113: 23–38.

    Google Scholar 

  • Langdon, C.J. and M.J. Waldock. 1981. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Biol. Ass. U.K. 61: 431–448.

    Google Scholar 

  • Nichols, B.W. 1965. Light induced changes in the lipids of Chlorella vulgaris. Biochim. Biophys. Acta 106: 274–279.

    Google Scholar 

  • Opute, F.I. 1974. Lipid and fatty-acid composition of diatoms. J. Exp. Bot. 25: 823–835.

    Google Scholar 

  • Orcutt, D.M. and G.W. Patterson. 1974. Effect of light intensity upon lipid composition of Nitzschia closterium (Cylindrotheca fusiformis). Lipids 9: 1000–1003.

    Article  CAS  Google Scholar 

  • Otsuka, H. and Y. Morimura. 1966. Change of fatty acid composition of Chlorella ellipsoidea during its cell cycle. Plant Cell Physiol. 7: 663–670.

    CAS  Google Scholar 

  • Shifrin, N.S. and S.W. Chisholm. 1981. Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J. Phycol. 17: 374–384.

    Article  CAS  Google Scholar 

  • Sicko-Goad, L., M.S. Simmons, D. Lazinsky and J. Hall. 1988. Effect of light cycle on diatom fatty acid composition and quantitative morphology. J. Phycol. 24: 1–7.

    Article  CAS  Google Scholar 

  • Sieburth, J. McN, P.W. Johnson and P.E. Hargraves. 1988. Characterization of Aureococcus anophagefferens Gen. et sp. nov. (Chrysophyceae), the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. J. Phycol. 24: 416–425.

    Article  Google Scholar 

  • Tracey, G.A. 1988. Feeding reduction, reproductive failure, and mortality in Mytilus edulis during the 1985 ‘brown tide’ in Narrangansett Bay, Rhode Island. Mar. Ecol. Prog. Ser. 50: 73–81.

    Google Scholar 

  • Volkman, J.K., D.J. Smith, G. Eglinton, T.E.V. Forsberg and E.D.S. Corner. 1981. Sterol and fatty acid composition of four marine haptophycean algae. J. Mar. Biol. Ass. U.K. 61: 509–527.

    Google Scholar 

  • Waldock, M.J. and I.A. Nascimento. 1979. The triacylglycerol composition of Crassostrea gigas larvae fed on different algal diets. Mar. Biol. Letters 1: 77–86.

    Google Scholar 

  • Waldock, M.J. and D.L. Holland. 1984. Fatty acid metabolism in young oysters Crassostrea gigas: polyunsaturated fatty acids. Lipids 19: 332–336.

    Article  CAS  Google Scholar 

  • Walne, P.R. 1970. Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fish. Invest. Minist. Agric. Fish Food (G.B.), Ser. II 26: 62 pp.

    Google Scholar 

  • Webb, K.L. and F.-L. Chu. 1983. Phytoplankton as a food source for bivalve larvae. In: Biochemical and physiological approaches to shell fish nutrition. Proc. 2nd Int. Conf. Aquaculture Nutr., G.D. Pruder et al. (Eds.), World Mariculture Soc. Spec. Publ. No. 2. Louisiana State University, pp. 272–291.

    Google Scholar 

  • Wood, B.J.B. 1974. Fatty acids and saponifiable lipids. In: Algal physiology and biochemistry. W.D.P. Stewart (Ed.), Univ. Calif. Press, Berkeley, 236–265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bricelj, V.M., Fisher, N.S., Guckert, J.B., Chu, FL.E. (1989). Lipid Composition and Nutritional Value of the Brown Tide Alga Aureococcus anophagefferens . In: Cosper, E.M., Bricelj, V.M., Carpenter, E.J. (eds) Novel Phytoplankton Blooms. Coastal and Estuarine Studies, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75280-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75280-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75282-7

  • Online ISBN: 978-3-642-75280-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics