Skip to main content

Nonlinear Disease Progress Curves

  • Chapter
Epidemics of Plant Diseases

Part of the book series: Ecological Studies ((ECOLSTUD,volume 13))

Abstract

An epidemic can be defined as a change in disease (incidence or severity) in a host population over time and space (Kranz 1974b). The fundamental way of depicting a plant disease epidemic is to plot disease level at several times or distances. The plot of disease versus time, the disease progress curve, summarizes the interaction of pathogen, host, and environment in disease development (Van der Plank, 1963; Kranz, 1974a, 1978). Whether an investigator is interested in understanding an epidemic process or merely wishes to compare two or more epidemics, disease progress curves must be prepared, quantified, and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amer FA, Williams WT (1957) Leaf-area growth in Pelargonium zonale. Ann Bot (Lond) 21:339–342

    Google Scholar 

  • Analytis S (1973) Methodik der Analyse von Epidemien dargestellt am Apfelschorf (Venturia inaequalis (Cooke) Aderh). Acta Phytomed 1:7–75

    Google Scholar 

  • Analytis S (1979) Die Transformation von Befallswerten in der quantitativen Phytopathologie: II. Das Linearisieren von Befallskurven. Phytopathol Z 96:156–171

    Article  Google Scholar 

  • Arrigoni M, Steiner A (1983) Square-root models for the Volterra equations and the explicit solution of these models. Acta Biotheor 32:123–142

    Article  PubMed  CAS  Google Scholar 

  • Bailey NTJ (1975) The mathematical theory of infectious diseases and its application. Grifin, London

    Google Scholar 

  • Bailey RL (1980) The potential of Weibull-type functions as flexible growth curves: discussion. Can J For Res 8:424–431

    Google Scholar 

  • Bard Y (1974) Nonlinear Parameter Estimation. Academic Press, Orlando

    Google Scholar 

  • Barratt RW (1945) Intraseasonal advance of disease to evaluate fungicides or genetical differences. Phytopathology 35:654

    Google Scholar 

  • Becker N (1979) The uses of epidemic models. Biometrics 35:295–305

    Article  PubMed  CAS  Google Scholar 

  • Belsley DA, Kuh E, Welsch RE (1980) Regression Diagnostics. Wiley, New York

    Book  Google Scholar 

  • Berger RD (1981) Comparison of the Gompertz and logistic equations to describe plant disease progress. Phytopathology 71:716–719

    Article  Google Scholar 

  • Berger RD (1988) The analysis of effects of control measures on the development of epidemics. In: Kranz J, Rotem J (eds) Experimental techniques in plant disease epidemiology. Springer, Berlin Heidelberg New York Tokyo pp 137–151

    Chapter  Google Scholar 

  • Berger RD (1989) Description and application of some general models for plant disease epidemics. In: Leonard KJ, Fry WE (eds) Plant diseases epidemiology: Genetics, resistance, and management. vol 2: McGraw-Hill, New York, pp 125–149

    Google Scholar 

  • Berger RD, Jones JW (1985) A general model for disease progress with functions for variable latency and lesion expansion on growing host plants. Phytopathology 75:792–797

    Article  Google Scholar 

  • Beverton RH, Holt SJ (1957) On the dynamics of exploited fish populations. Fishery Invest (Lond) Ser II 19

    Google Scholar 

  • Blackman JH (1919) The compound interest law and plant growth. Ann Bot 33:353–360

    Google Scholar 

  • Buwalda JG, Rou GJ, Stribley DP, Tinker PB (1982) New Phytol 91:669–682

    Article  Google Scholar 

  • Byrne GF, Drummond JE (1980) Fitting a growth curve equation to field data. Agric Meteorol 22:1–9

    Article  Google Scholar 

  • Campbell CL (1986) Interpretation and uses of disease progress curves for root diseases. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology: population dynamics and management. Vol 1. Macmillan, New York, pp 38–54

    Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Campbell CL, Noe JP (1985) The spatial analyses of soilborne pathogens and root diseases. Annu Rev Phytopathol 23:129–148

    Article  Google Scholar 

  • Campbell CL, Madden LV, Pennypacker SP (1980a) Structural characterization of bean root rot epidemics. Phytopathology 70:152–155

    Article  Google Scholar 

  • Campbell CL, Pennypacker SP, Madden LV (1980b) Progression dynamics of hypocotyl rot of snapbean. Phytopathology 70:487–494

    Article  Google Scholar 

  • Campbell CL, Jacobi WR, Powell NT, Main CE (1984) Analysis of disease progression and the randomness of occurrence of infected plants during tobacco black shank epidemics. Phytopatholgy 74:230–235

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied Regression Analysis, 2nd ed. Wiley, New York

    Google Scholar 

  • Dubey SD (1967) Revised tables for asymptotic efficiencies of the moment estimators for the parameters of the Weibull laws. Naval Res Logistics Quart 14:261–267

    Article  Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression II. Biometrika 38:159–178

    PubMed  CAS  Google Scholar 

  • Edminster TW (1978) Concepts for using modeling as a research tool. Tech Manual 520, US Dep Agr Agric Res Serv 18

    Google Scholar 

  • Fenton CAL, Kester DE, Kuniyuski AH (1988) Models for noninfectious bud failure in almond. Phytopathology 78:139–143

    Article  Google Scholar 

  • Fleming RA (1983) Development of a simple mechanistic model of cerai rust progress. Phytopathology 73:308–312

    Article  Google Scholar 

  • Fracker SB (1936) Progressive intensification of uncontrolled plant-disease outbreaks. J Econ Entomol 29:923–940

    Google Scholar 

  • Fry WE, Apple AE, Bruhn JA (1983) Evaluation of potato late blight forecaster modified to incorporate host resistance and fungicide weathering. Phytopathology 73:1054–1059

    Article  Google Scholar 

  • Fulton WC (1979) On comparing values of Van der Plank’s r. Phytopathology 69:1162–1164

    Article  Google Scholar 

  • Gallant AR, Goebel JJ (1976) Nonlinear regression with autocorrelated errors. J Am Stat Assoc 71:961–967

    Article  Google Scholar 

  • Gäumann E (1946) Pflanzliche Infektionslehre. Birkhäuser, Basel

    Google Scholar 

  • Glasbey CA (1979) Correlated residuals in non-linear regression applied to growth data. Appl Statist 28:251–259

    Article  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality. Phil Trans R Soc Lond 36:513–585

    Google Scholar 

  • Gregory PH (1948) The multiple infection transformation. Ann Appl Biol 35:412–417

    Article  PubMed  CAS  Google Scholar 

  • Griggs MN, Nance WL, Dinus RJ (1978) Analysis and comparison of fusiform disease progress curves for five slash pine families. Phytopathology 68:1631–1636

    Article  Google Scholar 

  • Hastings NAJ, Peacock JB (1975) Statistical distributions. Butterworths, London

    Google Scholar 

  • Hau B, Kranz J (1977) Ein Vergleich verschiedener Transformationen von Befallskurven. Phytopathol Z 88:53–68

    Article  Google Scholar 

  • Henderson HV, Velleman PF (1981) Building regression models interactively. Biometrics 37:391–411

    Article  Google Scholar 

  • Hill AV (1913) The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem J 7:471–480

    PubMed  CAS  Google Scholar 

  • Huisman OC (1982) Interrelations of root growth dynamics to epidemiology of root-invading fungi. Annu Rev Phytopathol 20:303–327

    Article  Google Scholar 

  • Hunt R (1982) Plant growth curves: the functional approach to plant growth analysis. Univ Park Press, Baltimore, MD

    Google Scholar 

  • Jeger MJ (1980) Choice of disease progress model by means of relative rates. Prot Ecol 2:183–188

    Google Scholar 

  • Jeger MJ (1982a) Using growth curve relative rates to model disease progress of apple powdery mildew. Prot Ecol 4:49–58

    Google Scholar 

  • Jeger MJ (1982b) The relation between total, infectious, and postinfectious diseased plant tissue. Phytopathology 72:1185–1189

    Article  Google Scholar 

  • Jeger MJ (1983) Analyzing epidemics in time and space. Plant Pathol 32:5–11

    Article  Google Scholar 

  • Jeger MJ (1984) Relating disease progress to cumulative numbers of trapped spores: apple powdery mildew and scab epidemics in sprayed and unsprayed orchard plots. Plant Pathol 33:517–523

    Article  Google Scholar 

  • Jeger MJ (1986) The potential of analytic compared with simulation approaches to modeling in plant disease epidemiology. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology: population dynamics and management. Vol 1. Macmillan, New York, pp 255–281

    Google Scholar 

  • Jeger MJ (1987a) The influence of root growth and inoculum density on the dynamics of root disease epidemics: Theoretical analysis. New Phytol 107:459–478

    Article  Google Scholar 

  • Jeger MJ (1987b) Modelling the dynamics of plant pathogens. In: Wolfe MS, Caten CE (eds) Populations of plant pathogens: their dynamics and genetics. Blackwell, Oxford, pp 91–107

    Google Scholar 

  • Jeger MJ (1990) The theory of plant disease epidemics. Elsevier, The Netherlands (in press)

    Google Scholar 

  • Jolicoeur P (1985) A flexible 3-parameter curve for limited or unlimited somatic growth. Growth 49:271–281

    PubMed  CAS  Google Scholar 

  • Jowett D, Browning JA, Haning BC (1974) Nonlinear disease progress curves. In: Kranz J (ed) Epidemics of plant diseases: mathematical analysis and modeling. Springer, Berlin Heidelberg New York, pp 115–136 (Ecological studies 13)

    Google Scholar 

  • Kenerley CM, and Bruck RI (1987) Distribution and disease progress of Phytophthora root rot of Fraser fir seedlings. Phytopathology 77:520–526

    Article  Google Scholar 

  • Kranz J (1974a) Comparison of epidemics. Annu Rev Phytopathol 12:355–374

    Article  Google Scholar 

  • Kranz J (1974b) The role and scope of mathematical analysis and modeling in epidemiology. In: Kranz J (ed) Epidemics of plant diseases: mathematical analysis and modeling. Springer, Berlin Heidelberg New York, pp 7–54 (Ecological studies 13)

    Google Scholar 

  • Kranz J (1978) Comparative anatomy of epidemics. In: Horsfall JG, Cowling EB (eds) Plant disease, an advanced treatise. Vol 2. Academic Press, London New York, pp 33–62

    Google Scholar 

  • Kushalappa AC, Ludwig A (1982) Calculation of apparent infection rate in plant diseases: Development of a method to correct for host growth. Phytopathology 72:1373–1377

    Article  Google Scholar 

  • Kvalseth TO (1985) Cautionary note about R2. Am Statis 39:279–285

    Article  Google Scholar 

  • Lalancette N, Hickey KD (1986) Disease progression as a function of plant growth. Phytopathology 76:1171–1175

    Article  Google Scholar 

  • Large EC (1952) The interpretation of progress curves for potato late blight and other plant diseases. Plant Pathol 1:109–117

    Article  Google Scholar 

  • Laut FT, Elhem MH, Hoarse RC, Turner EA, Carter AR (1969) Ann Appl Biol 64:449–459

    Article  Google Scholar 

  • Leslie PH, Gower JC (1960) The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47:219–234

    Google Scholar 

  • Lotka AJ (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Madden LV (1980) Quantification of disease progression. Prot Ecol 2:159–176

    Google Scholar 

  • Madden LV (1983) Measuring and modeling crop losses at the field level. Phytopathology 73:1591–1596

    Article  Google Scholar 

  • Madden LV (1986) Statistical analysis and comparison of disease progress curves. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology: population dynamics and management. Vol 1. Macmillan, New York, pp 55–84

    Google Scholar 

  • Madden LV (1989) Dynamic nature of within-field disease and pathogen distribution. In: Jeger MJ (ed) The spatial component of plant disease epidemics. Prentice-Hall, New York, pp 96–126

    Google Scholar 

  • Madden LV, Campbell CL (1986) Description of virus disease epidemics in time and space. In: McLean GD, Garrett RG, Ruesink WG (eds) Plant virus epidemiology: monitoring, modeling, and predicting outbreaks. Academic Press, Australia, pp 273–293

    Google Scholar 

  • Madden LV, Louie R, Knoke JK (1987a) Temporal and spatial analysis of maize dwarf mosaic epidemics. Phytopathology 77:148–156

    Article  Google Scholar 

  • Madden LV, Pirone TP, Raccah B (1987b) Temporal analysis of two viruses increasing in the same tobacco fields. Phytopathology 77:974–980

    Article  Google Scholar 

  • Malthus TR (1798) An essay on the principle of population. Johnson, London

    Google Scholar 

  • Medawar PB (1940) The growth, growth energy, and aging of the chicken’s heart. Proc R Soc Lond Ser B 129:332–355

    Article  Google Scholar 

  • Mitscherlich EA (1909) Das Gesetz des Minimum und das Gesetz des abnehmenden Bodenertrags. Landwirtsch Jahrb 38:537–552

    CAS  Google Scholar 

  • M’Kendrick AC, Pal MK (1911) The rate of multiplication of micro-organisms: a mathematical study. Proc R Soc Edin 31:649–655

    Google Scholar 

  • Nakasuji F, Miyai S, Kawamoto H, Kiritani K (1985) Mathematical epidemiology of rice dwarf virus transmitted by green rice leafhoppers: A differential equation model. J App Ecol 22:839–847

    Article  Google Scholar 

  • Neter J, Wasserman W, Kutner MH (1983) Applied linear regression models. Irwin, Homewood, Illinois

    Google Scholar 

  • Park EW, Lim SM (1985) Empirical estimation of the asymptotes of disease progress curves and the use of the Richards generalized rate parameters for describing disease progress. Phytopathology 75:786–791

    Article  Google Scholar 

  • Pearl R, Reed LJ (1920) Rate of growth of the population of the United States since 1790 and its mathematical presentation. Proc Nat Acad Sci 6:275–288

    Article  PubMed  CAS  Google Scholar 

  • Pegelow EJ, Taylor BB, Horrocks RD, Buxton DR, Marx DB, Wanjura DF (1977) The Gompertz function as a model for cotton hypocotyl elongation. Agron J 69:875–878

    Article  Google Scholar 

  • Pennypacker SP, Knoble HD, Antle CE, Madden LV (1980) A flexible model for studying plant disease progression. Phytopathology 70:232–235

    Article  Google Scholar 

  • Pfender WF (1982) Monocyclic and polycyclic root disease: distinguishing between the nature of the disease cycle and the shape of the disease progress curve. Phytopathology 72:31–32

    Article  Google Scholar 

  • Piantadosi S (1987) Generalizing growth functions assuming parameter heterogeneity. Growth 51:50–63

    PubMed  CAS  Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Prodan M (1968) Forest biometrics. Pergammon, Oxford

    Google Scholar 

  • Pruitt KM, DeMuth RE, Turner ME Jr (1979) Practical application of generic growth theory and the significance of the growth curve parameters. Growth 43:19–35

    PubMed  CAS  Google Scholar 

  • Ratkowsky DA (1983) Nonlinear regression modeling: a unified approach. Dekker, New York

    Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Richards FJ (1969) The quantitative analysis of growth. In: Steward FC (ed) Plant physiology. Vol VA. Academic Press, London New York, pp 3–76

    Google Scholar 

  • Ross GJS (1980) Maximum likelihood program, Release 3.06. Lawes Agricultural Trust. Rothamsted Exp Stat, Harpenden, Great Britain

    Google Scholar 

  • Rouse DI (1985) Construction of temporal models: I. Disease progress of air-borne pathogens. In: Gilligan CA (ed) Advances in plant pathology: mathematical modelling of crop disease. Vol 3. Academic Press, London New York, pp 11–29

    Google Scholar 

  • Sandland RL, McGilchrist CA (1979) Stochastic growth curve analysis. Biometrics 35:253–271

    Google Scholar 

  • SAS/ETS (1984) User’s Guide, 5th edn. SAS Inst, Cary, NC

    Google Scholar 

  • Smith SE, Walker NA (1981) A quantitative study of mycorrhizae infection in Trifolium: Separate determination of rates of infection and mycelia growth. New Phytol 89:225–240

    Article  Google Scholar 

  • Thal WM, Campbell CL (1988) Analysis of progress of alfalfa leafspot epidemics. Phytopathology 78:389–395

    Article  Google Scholar 

  • Thal WM, Campbell CL, Madden LV (1984) Sensitivity of Weibull model parameter estimates to variation in simulated disease progression data. Phytopathology 74:1425–1430

    Article  Google Scholar 

  • Thresh JM (1983) Progress curves of plant virus disease. In: Coaker TH (ed) Applied biology. Vol 8. Academic Press, London New York, pp 1–85

    Google Scholar 

  • Tinker PB (1975) Effects of vesicular-arbyscular mycorrhizas on higher plants. Symp Soc Exp Biol 29:325–349

    PubMed  CAS  Google Scholar 

  • Tollenaar H (1985) The first derivative of the Richards equation as descriptive function for the response of various biological processes to inputs and of competition. Agro Ciencia 1:137–144

    Google Scholar 

  • Turner ME, Blumenstein BA, Sebaugh JL (1969) A generalization of the logistic law of growth. Biometrics 25:577–580

    Article  PubMed  Google Scholar 

  • Turner ME, Bailey EL, Kirk KA, Pruitt KM (1976) A theory of growth. Math Biosci 29:367–373

    Article  Google Scholar 

  • Van der Plank JE (1960) Analysis of epidemics. In: Horsfall JG, Dimond AE (eds) Plant pathology. Vol 3. Academic Press, London New York

    Google Scholar 

  • Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, London New York

    Google Scholar 

  • Vanderplank JE (1982) Host-pathogen interactions in plant disease. Academic Press, London New York

    Google Scholar 

  • Venus JC, Causton DR (1979) Confidence limits for Richards functions. J Appl Ecol t6:939–947

    Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corr Math Phys 10:113–121

    Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature (Lond) 188:558–560

    Article  Google Scholar 

  • Von Bertalanffy L (1938) A quantitative theory of organic growth. Hum Biol 10:181–243

    Google Scholar 

  • Von Bertalanffy L (1957) Quantitative laws for metabolism and growth. Q Rev Biol 32:217–231

    Article  Google Scholar 

  • Waggoner PE (1965) Microclimate and plant disease. Annu Rev Phytopathol 3:103–126

    Article  Google Scholar 

  • Waggoner PE (1986) Progress curves of foliar diseases: their interpretation and use. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology: population dynamics and management. Vol 1. Macmillan, New York, pp 3–37

    Google Scholar 

  • Waggoner PE, Rich S (1981) Lesion distribution, multiple infection, and the logistic increase of plant disease. Proc Natl Acad Sci USA 78:3292–3295

    Article  PubMed  CAS  Google Scholar 

  • Walker NA, Smith SE (1984) The quantitative study of mycorhizal infection II. The relation of rate of infection and speed of fungal growth to propagule density, the mean length of the infection unit, and the limiting value of the fraction of the root infected. New Phytol 96:55–69

    Article  Google Scholar 

  • Weibull W (1939) A statistical theory of the strength of material. Ingenioersvetenskapskad Handl 153

    Google Scholar 

  • Weibull W (1951) A statistical distribution of wide applicability. J Appl Mechanics 18:293–297 Winsor CP (1932) Gompertz curve as a growth curve. Proc Natl Acad Sci 18:1–8

    Google Scholar 

  • Wishart J (1938) Growth rate determinations in nutrition studies with the bacon pig, and their analysis. Biometrika 30:16–28

    Google Scholar 

  • Wright S (1926) Review of the biology of population growth. J Am Stat Soc 21:493–497

    Google Scholar 

  • Yang RC, Kozak, Smith JHG (1978) The potential of Weibull-type functions as flexible growth curves. Can J For Res 8:424–431

    Article  Google Scholar 

  • Zeger SL, Harlow SD (1987) Mathematical models from laws of growth to tools for biologic analysis: fifty years of growth. Growth 51:1–21

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madden, L.V., Campbell, C.L. (1990). Nonlinear Disease Progress Curves. In: Kranz, J. (eds) Epidemics of Plant Diseases. Ecological Studies, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75398-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75398-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75400-5

  • Online ISBN: 978-3-642-75398-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics