Skip to main content

Geological Processes and Hydrothermal Mineralisation in Plate Tectonic Settings — Mineral Exploration

  • Chapter
Hydrothermal Mineral Deposits

Abstract

The Earth’s outer layers, namely, the lithosphere and the asthenosphere have an important role in the mechanisms of plate tectonics. The outermost layer of our planet is the relatively strong and rigid lithosphere — about 100 km thick — broken up into a number of major and minor plates, whose present-day configuration is shown in Fig. 6.1. The boundaries between plates, divergent (rifting, spreading zones), convergent (subduction and collision zones) and transform faults, are the sites of intense geological activity including earthquakes, volcanism, mountain building and of course mineralisation. The lithosphere overlies the asthenosphere, a weak region of the upper mantle about 200 km thick, where temperatures approach melting point. The boundary, which is probably gradational, between these two layers is by no means well defined, and is not to be confused with the crust-mantle boundary which is defined by the Mohorovicic discontinuity. Although the reason for the movement of the lithospheric plates is not entirely understood, it is generally agreed that mantle convective motions, possibly driven by radiogenic heat, may be responsible. The spreading motion of the oceanic crust is indicated by the characteristic magnetic stripes, symmetrically disposed on either side of a mid-ocean ridge, and first described by Vine and Matthews (1963). In this chapter we examine plate tectonic settings and associated types of hydrothermal mineralisation. A schematic view of plate tectonic settings is shown in Fig. 6.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atwater T (1981) Propagating rifts in seafloor spreading patterns. Nature (London) 290: 185–186

    Article  Google Scholar 

  • Bailey D K (1978) Continental rifting and mantle degassing. In: Newman E R, Ramberg I B (eds) Petrology and geochemistry of continental rifts. Reidel, Dordrecht, pp 1–13

    Google Scholar 

  • Bally A W, Snelson S (1980) Realms of subsidence. Can Soc Petr Geol Mem 6: 9–94

    Google Scholar 

  • Beus A A, Grigoryan S (1977) Geochemical exploration methods for mineral deposits. Applied Publ, Wilmette 111, 287 pp

    Google Scholar 

  • Bonatti E, Crane K (1984) Oceanic fracture zones. Sci Am 250: 36–47

    Article  Google Scholar 

  • Bott M H P (1981) Crustal doming and the mechanism of continental rifting. Tectonophysics 73: 1–8

    Article  Google Scholar 

  • Bott M H P (1982) The Interior of the Earth, 2nd edn. Arnold, London, 403 pp

    Google Scholar 

  • Brown G C (1982) Calc-alkaline intrusive rocks: Their diversity, evolution, and relation to volcanic arcs. In: Thorpe R S (ed) Andesites. John Wiley & Sons, New York, pp 437–461

    Google Scholar 

  • Brown G C, Thorpe R S, Webb P C (1984) The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J Geol Soc London 141: 413–426

    Article  Google Scholar 

  • Burke K C, Kidd W S F, Turcotte D L, Dewey J F, Mouginis-Mark P J, Parmentier E M, Sengor A M C, Tapponier P E (1981) Tectonics of basaltic volcanism. In: Basaltic volcanism on the terrestrial planets. Lunar and Planetary Inst, Houston, Texas. Pergamon Press, New York, pp 803–898

    Google Scholar 

  • Burke K, Kidd W S F, Kusky T (1985) Is the Ventersdorp rift system of Southern Africa related to continental collision between the Kaapvaal and Zimbabwe cratons at 2.64 Ga ago? Tectonophysics 115: 1–24

    Article  Google Scholar 

  • Clendenin C W, Charlesworth E G, Maske S (1988) An early Proterozoic three-stage rift system, Kaapvaal craton, South Africa. Tectonophysics 145: 73–86

    Google Scholar 

  • Collins W J, Beams S D, White A J R, Chappell B W (1982) Nature and origin of A-type granites with particular reference to south-eastern Australia. Contrib Mineral Petrol 80: 189–200

    Article  Google Scholar 

  • Coward M P, Ries A C (eds) (1986) Collision Tectonics. Geol Soc Spec Publ 19. Blackwell,London, 415 pp

    Google Scholar 

  • Dewey J F, Burke K C A, (1974) Hot spots and continental breakup: implications for collisional orogeny. Geology 2: 57–60

    Article  Google Scholar 

  • Dickinson W R, Yarborough H (1976) Plate tectonics and hydrocarbon accumulation. Am Ass Petroleum Geol Contin Educ Course Note Ser 1

    Google Scholar 

  • Eisenlohr B N, Groves D, Partington G A (1989) Crustal-scale shear zones and their significance to Archean gold mineralisation in Western Australia. Mineral Depos 24: 1–8

    Article  Google Scholar 

  • Fitton J G, Upton B J G (eds) (1987) Alkaline igneous rocks. Geol Soc Spec Publ 30. Blackwell, London, 568 pp

    Google Scholar 

  • Govett G J S (1983) Rock geochemistry in mineral exploration.In: Govett G J S (ed) Handbook of Exploration Geochemistry, Vol 3. Elsevier, Amsterdam, 461 pp

    Google Scholar 

  • Harris N B W, Pearce J A, Tindle A G (1986) Geochemical characteristics of collision zone magmatism. Geol Soc Spec Publ 19. Blackwell, London, pp 67–81

    Google Scholar 

  • Hashimoto M, Uyeda S, (eds) (1983) Accretion tectonics in the Circum-Pacific Regions. Proc Intern Sem Accretion tectonics Terra Sci and D Reidel, Dordrecht, 358 pp

    Google Scholar 

  • Hawkins J W, Bloomer S H, Evans C A, Melchior J T (1984) Evolution of intra-oceanic arc-trench systems. Tectonophysics 102: 175–205

    Article  Google Scholar 

  • Hey R N, Wilson D S (1982) Propagating rift explanation for the tectonic evolution of the northeast Pacific — the pseudomovie. Earth Planet Sci Lett 58: 167–188

    Article  Google Scholar 

  • Horscroft F D M (1961) Vegetation. In: Mendelsohn F (ed) The geology of the Northern Rhodesian copperbelt. MacDonald, London, pp 73–80

    Google Scholar 

  • Hutchison C S (1983) Economic deposits and their tectonic setting. MacMillan, New York, 355 pp

    Google Scholar 

  • Leitch E C, Scheibner E (eds) (1987) Terrane Accretion and Orogenic Belts. Geodyn Ser 19. Am Geophys Un; Geol Soc Am, 343 pp

    Google Scholar 

  • Mitchell A H G, Garson M S (1981) Mineral deposits and global tectonic settings. Academic Press, New York, London, 405 pp

    Google Scholar 

  • Nur A, Ben-Avraham Z (1982) Oceanic plateaus, the fragmentation of continents, and mountain building. J Geophys Res 87: 3644–3661

    Article  Google Scholar 

  • Reedman J H (1979) Techniques in mineral exploration. Appl Sci, London, 533 pp

    Book  Google Scholar 

  • Ringwood A E (1974) The petrological evolution of island arc systems. J Geol Soc Lond 130: 183–204

    Article  Google Scholar 

  • Ringwood A E (1985) Mantle dynamics and basalt petrogenesis. Tectonophysics 112: 17–34

    Article  Google Scholar 

  • Rose A W, Hawkes H E, Webb J S (1979) Geochemistry in mineral exploration. Academic Press, New York, London, 657 pp

    Google Scholar 

  • Sawkins F J (1990) Metal deposits in relation to plate tectonics, 2nd edn. Springer, Berlin, Heidelberg, New York, 461 pp

    Google Scholar 

  • Schermer E R, Howell D G, Jones D L (1984) The origin of allochthonous terranes: perspectives on the growth and shaping of continents. Annu Rev Earth Planet Sci 12: 107–131

    Article  Google Scholar 

  • Sengör A M (1987) Tectonics of the Thethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15: 213–244

    Article  Google Scholar 

  • Smith B, Christiansen, R L (1980) Yellowstone Park as a window on the Earth’s interior. Sci Am 242: 84–97

    Google Scholar 

  • Smith R E (ed) (1983) Geochemical exploration in deeply weathered terrain. CSIRO, Inst Energ Earth Res, Perth

    Google Scholar 

  • Sorensen H, (ed) (1974) The alkaline rocks. John Wiley & Sons, New York, 622 pp

    Google Scholar 

  • Thorpe R S, Francis P W, O’Callagahn L (1984) Relative role of source composition, fractional crystallisation and crustal contamination in the petrogenesis of Andean volcanic rocks. Phil Trans R Soc London Ser A 310: 675–692

    Article  Google Scholar 

  • Tyler N (1986) The origin of gold mineralisation in the Pilgrim’s Rest goldfield, Eastern Transvaal. Econ Geol Res Unit, Inf Circ 179. Univ Witwatersrand, Johannesburg

    Google Scholar 

  • Uyeda S (1982) Subduction zones: An introduction to comparative subductology. Tectonophysics 81: 133–159

    Article  Google Scholar 

  • Vine F J, Matthews D H (1963) Magnetic anomalies over ocean ridges. Nature (London) 199: 947–949

    Article  Google Scholar 

  • Wyllie P J (1981) Plate tectonics and magma genesis. Geol Rundsch 70: 128–153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pirajno, F. (1992). Geological Processes and Hydrothermal Mineralisation in Plate Tectonic Settings — Mineral Exploration. In: Hydrothermal Mineral Deposits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75671-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75671-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75673-3

  • Online ISBN: 978-3-642-75671-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics