Skip to main content

The History and Significance of Stromatolites

  • Chapter
Early Organic Evolution

Abstract

The fossil record of prokaryotes extends back 3500 million years and prokaryotes were only forms of life known for the first 2000 million years of Earth history. Understanding the fossil record of these organisms is important for the comprehension of the interaction of geological factors and the evolution of life. Prokaryo-tic microbial fossils, however, do not provide sufficient detailed evidence to help a great deal in this. Stromatolites, the biosedimentary products of microbe-sediment interactions, have the potential to provide significant information on the interaction of the biosphere, atmosphere, hydrosphere, and litho-sphere throughout the entire history of life on this planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. J Sediment Petrol 37: 1163– 1178

    Google Scholar 

  • Aitkin JD, Narbonne GM (1989) Two occurrences of Pre-cambrian thrombolites from the Mackenzie Mountains, northwestern Canada. Palaios 4: 384–388

    Google Scholar 

  • Allen KC, Briggs DEG (eds) (1989) Evolution and the fossil record. Belhaven, London, 265 pp

    Google Scholar 

  • Allison CW, Awramik SM (1989) Organic-walled microfos-sils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada. Precambrian Res 43:253–294

    Google Scholar 

  • Awramik SM (1971) Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 174:825–827

    Google Scholar 

  • Awramik SM (1976) Gunflint stromatolites: microfossil distribution in relation to stromatolite morphology. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 311–320

    Google Scholar 

  • Awramik SM (1986) New fossil finds in old rocks. Nature (London) 319:446–447

    Google Scholar 

  • Awramik SM (1990) Stromatolites. In: Briggs DEG, Crowther PR (eds) Palaeobiology. Blackwell, Oxford, pp 336–341

    Google Scholar 

  • Awramik SM (1991) Archean and Proterozoic stromatolites. In: Riding R (ed) Fossil algae and stromatolites. Springer, Berlin

    Google Scholar 

  • Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci USA 85: 1327–1329

    Google Scholar 

  • Awramik SM, Semikhatov MA (1979) The relationship between morphology, microstructure, and microbiota in three vertically intergrading stromatolites from the Gun-flint Iron Formation. Can J Earth Sci 16:2319–2330

    Google Scholar 

  • Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20:357–374

    Google Scholar 

  • Awramik SM, Schopf JW, Walter MR (1988) Carbonaceous filaments from North Pole, Western Australia: are there fossil bacteria in Archean stromatolites? A discussion. Precambrian Res 39: 303–309

    Google Scholar 

  • Bambach RK (1985) Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. In: Valentine JW (ed) Phanerozoic diversity patterns. Princeton Univ Press, Princeton, pp 191–253

    Google Scholar 

  • Barley ME, Eisenlohr BN, Groves DI, Perring CS, Vearncombe JR (1989) Late Archean convergent margin tectonics and gold mineralization: a new look at the Norseman-Wiluna Belt, Western Australia. Geology 17:826–829

    Google Scholar 

  • Betrand-Sarfati J (1976) An attempt to classify Late Precambrian stromatolite microstructure. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 251–259

    Google Scholar 

  • Bertrand-Sarfati J, Moussine-Pouchkine A (1985) Evolution and environmental conditions of Conophyton -Jacuto-phyton associations in the Atar dolomite (Upper Proter-ozoic, Mauritania). Precambrian Res 29: 207–234

    Google Scholar 

  • Bertrand-Sarfati J, Walter MR (1981) Stromatolite biostrati-graphy. Precambrian Res 15:353–371

    Google Scholar 

  • Black M (1933) The algal sediments of Andros Island, Bahamas. Philos Trans R Soc London Ser B 222: 165– 192

    Google Scholar 

  • Buck SG (1980) Stromatolite and ooid deposits within the fluvial and lacustrine sediments of the Precambrian Ventersdorp Supergroup of South Africa. Precambrian Res 12:311–330

    Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5: 161– 181

    Google Scholar 

  • Byerly GR, Lowe DR, Walsh MM (1986) Stromatolites from the 3,300-3,500-Myr Swaziland Supergroup, Bar-berton Mountain Land, South Africa. Nature (London) 319:489–491

    Google Scholar 

  • Cameron EM, Baumann A (1972) Carbonate sedimentation during the Archean. Chem Geol 10: 17–30

    Google Scholar 

  • Cao Rui-ji (1988) Study on stromatolite decline event in terminal Precambrian. Acta Palaeontol Sin 27: 737–750 (in Chinese with English summary)

    Google Scholar 

  • Carlile M (1982) Prokaryotes and eukaryotes: strategies and successes. Trends Biochem Sci 7: 128–130

    Google Scholar 

  • Casanova J (1986) East African Rift stromatolites. In: Fostick LE et al. (eds) Sedimentation in the African rifts. Geol Soc Spec Publ 23: 195–204

    Google Scholar 

  • Cloud P (1976) Major features of crustal evolution. Geol Soc S Afr Annexure 79: 1–33

    Google Scholar 

  • Cloud PE Jr, Semikhatov MA (1969) Proterozoic stromatolite zonation. Am J Sci 267:1017–1061

    Google Scholar 

  • Cussey R, Friedman GM (1976) Antipathetic relations among algal structures, burrowers, and grazers in Dogger (Jurassic) carbonate rocks, southeast of Paris, France. Am Assoc Petrol Geol Bull 60:612–616

    Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature (London) 324:55–58

    Google Scholar 

  • DiMarco MJ, Lowe DR (1989) Stratigraphy and sedimen-tology of an Early Archean felsic volcanic sequence, eastern Pilbara Block, Western Australia, with special reference to the Duffer Formation and implications for crustal evolution. Precambrian Res 44: 147–169

    Google Scholar 

  • Donaldson JA (1976) Paleoecology of Conophyton and associated stromatolites in the Precambrian Dismal Lakes and Rae Groups, Canada. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 523–534

    Google Scholar 

  • Ernst WG (1983) The early Earth and the Archean rock record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton Univ Press, Princeton, pp41–52

    Google Scholar 

  • Fairchild IJ, Herrington PM (1989) A tempestite-stromatolite-evaporite association (Late Vendian, East Greenland): a shore-face-lagoon model. Precambrian Res 43:101–127

    Google Scholar 

  • Fenton CL, Fenton MA (1939) Pre-Cambrian and Paleozoic algae. Geol Soc Am Bull 50:89–126

    Google Scholar 

  • Fischer AG (1965) Fossils, early life, and atmosphere history. Proc Natl Acad Sci USA 53: 1205–1215

    Google Scholar 

  • Gebelein CD (1974) Biologic control of stromatolite micro-structure: implications for Precambrian time stratigraphy. Am J Sci 274: 575–598

    Google Scholar 

  • Gilliland RL (1989) Solar evolution. Global Planet Change 1:35–55

    Google Scholar 

  • Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp11-126

    Google Scholar 

  • Golubic S, Barghoorn ES (1977) Interpretation of microbial fossils with special reference to the Precambrian. In: Flügel E (ed) Fossil algae. Springer, Berlin, pp1–14

    Google Scholar 

  • Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek near Lancaster, Pennsylvania. Verh Ver Limnol 19: 2315–2323

    Google Scholar 

  • Gould SJ (1989) Wonderful life. Norton, New York, 347 pp

    Google Scholar 

  • Green JW, Knoll AH, Swett K (1989) Microfossils from silicified stromatolitic carbonates of the Upper Proterozoic Limestone-Dolomite “Series”, central East Greenland. Geol Mag 126:567–585

    Google Scholar 

  • Grey K (1984) Biostratigraphic studies of stromatolites from the Proterozoic Earaheedy Group, Nabberu Basin, Western Australia. Geol Surv West Aust Bull 130:123pp

    Google Scholar 

  • Grey K, Moore LS, Burne RV, Pierson BK, Bauld J (1990) Lake Thetis, Western Australia: an example of saline lake sedimentation dominated by benthic microbial processes. Aust J Mar Freshwater Res 41: 275–300

    Google Scholar 

  • Grotzinger JP (1986) Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada. Geol Soc Am Bull 97:1208–1231

    Google Scholar 

  • Grotzinger JP (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development. Soc Econ Paleontol Min Spec Publ 44, pp 79–106

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry: preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton Univ Press, Princeton, pp 93–134

    Google Scholar 

  • Hoffman P (1967) Algal stromatolites: use in stratigraphic correlation and paleocurrent determination. Science 157:1043–1045

    Google Scholar 

  • Hoffman PF (1974) Shallow and deep-water stromatolites in Lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada. Am Assoc Petrol Geol Bul 58:856–867

    Google Scholar 

  • Hofman HJ (1981) Precambrian fossils in Canada -the 1970’s in retrospect. In: Campbell FHA (ed) Proterozoic basins in Canada. Geol Surv Can Pap 81-10:419–443

    Google Scholar 

  • Hofmann HJ, Chen Jinbiao (1981) Carbonaceous megafos-sils from the Precambrian (1800 Ma) near Jixian, northern China. Can J Earth Sci 18:443–447

    Google Scholar 

  • Horodyski RJ (1977) Environmental influences on columnar stromatolite branching patterns: examples from the Middle Proterozoic Belt Supergroup, Glacier National Park. Montana. J Paleontol 51: 661–671

    Google Scholar 

  • Horodyski RJ. Vonder Haar SP (1975) Recent calcareous stromatolites from Laguna Mormona (Baja California) Mexico. J Sediment Petrol 45:894–906

    Google Scholar 

  • Karhu J. Epstein S (1986) In implication of the oxygen isotope records in coexisting cherts and phosphates. Geochim Cosmochim Acta 50: 1745–1756

    Google Scholar 

  • Karpeta WP (1989) Bedded cherts in the Rietgat Formation, Hartbeesfontein, South Africa: a Late Archaean to Early Proterozoic magadiitic alkaline playa lake deposit? S Afr J Geol 92:29–36

    Google Scholar 

  • Kasting JF (1989) Long-term stability of the Earth’s climate. Global Planet Change 1: 83–95

    Google Scholar 

  • Keller BM, Kazakov GA, Krylov IN, Nuzhnov SV, Semikhatov MA (1960) Novye dannye po stratigrafii rifeiskoi gruppy (verkhnii proterozoi). Izv Akad Nauk SSSR Ser Geol 1960(12):26–41

    Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:85–108

    Google Scholar 

  • Kennard J (1981) The Arrinthrunga Formation: Upper Cambrian epeiric carbonates in the Georgina Basin, central Australia. Bur Min Res Bull 211:61 pp

    Google Scholar 

  • Kennard JM, James NP (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1:492–503

    Google Scholar 

  • Kepper JC (1974) Antipathetic relation between Cambrian trilobites and stromatolites. Am Assoc Petrol Geol Bull 58:141–142

    Google Scholar 

  • Knoll AH (1985) A paleobiological perspective on sabkhas. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems. Springer, Berlin, pp407–425

    Google Scholar 

  • Knoll AH, Bauld J (1989) The evolution and ecological tolerance in prokaryotes. Trans Soc Edinburgh Earth Sci 80:209–223

    Google Scholar 

  • Knoll AH, Golubic S (1979) Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Res 10:115–151

    Google Scholar 

  • Komar VlA, Raaben ME, Semikhatov MA (1965) Conophytons in the Riphean of the USSR and their stratigraphic significance. Tr Geol Inst, Akad Nauk SSSR 131:72pp (in Russian)

    Google Scholar 

  • Korolyuk IK (1960) Stromatolites of the Lower Cambrian and Proterozoic of the Irkutsk Amphitheater. Tr Inst Geol Razrab Goryuch Iskop, Akad Nauk SSSR 1:112– 161 (in Russian)

    Google Scholar 

  • Kroner A., Todt W (1988) Single zircon dating constraining the maximum age of the Barberton Greenstone Belt, southern Africa. J Geophys Res 93: 15329–15 337

    Google Scholar 

  • Krylov IN (1963) Stolbchaty vetvyashchiesya stromatolity rifeiskikh otlozhenii yuzhnogo urala. Tr Geol Inst Akad Nauk SSSR 69:1–133

    Google Scholar 

  • Liang Yuzuo. Cao Ruiji. Zhang Luyi et al. (1984) Pseudo-gymnosolenaceae of Late Precambrian in China. Geol Publ House, Beijing, 200 pp (in Chinese with English abstract)

    Google Scholar 

  • Logan BW (1961) Cryptozoon and associated stromatolites from the Recent of Shark Bay, Western Australia. J Geol 69:517–533

    Google Scholar 

  • Logan BW, Hoffman P. Gebelein CD (1974) Algal mats, cryptalgal fabrics and structures. Hamelin Pool. Western Australia. Am Assoc Petrol Geol Mem 22:140–194

    Google Scholar 

  • Lowe DR (1980a) Archean sedimentation. Ann Rev Earth Planet Sci 8: 140–194

    Google Scholar 

  • Lowe DR (1980b) Stromatolites 3.400-Myr old from the Archean of Western Australia. Nature (London) 284:441–443

    Google Scholar 

  • Lowe DR (1983) Restricted shallow-water sedimentation of Early Archean stomatolitic and evaporitic strata of the Strelley Pool Chert. Pilbara Block, Western Australia. Precambrian Res 19:239–283

    Google Scholar 

  • Makarikhin VV, Kononova GM (1983) Fitolity nizhnego proterozoya Karelii. Akad Nauk SSSR, Karel Fil, Inst Geol. Nauka. Leningrad, 180pp

    Google Scholar 

  • Margulis L. Schwartz KV (1982) Five kingdoms. Freeman, San Francisco. 338 p

    Google Scholar 

  • Maslov VP (1939) An attempt to determine the age of the Ural’s barren strata with the aid of stromatolites. Probl Paleontol 5:277–284 (in Russian with English summary)

    Google Scholar 

  • McAllister JF, Ross RJ (1982) Steeply inclined algal columns in Late Tertiary Furnace Creek Formation, Death Valley, California. Am Assoc Petrol Geol Bull 62: 541 (Abstr)

    Google Scholar 

  • Monty CLV (1967) Distribution and structure of Recent stromatolitic algal mats, eastern Andros Island, Bahamas. Ann Soc Geol Belg 90:55–100

    Google Scholar 

  • Monty CLV (1973) Precambrian background and Phane-rozoic history of stromatolite communities, an overview. Ann Soc Geol Belg 96: 585 624

    Google Scholar 

  • Monty CLV (1984) Stromatolites and Earth history. Terra Cognita 4:423–430

    Google Scholar 

  • Newman MJ, Rood RT (1977) Implications of solar evolution for the Earth’s early atmosphere. Science 198:1035–1037

    Google Scholar 

  • Newton RC (1978) Experimental and thermodynamic evidence for the operation of high pressures in Archaen metamorphism. In: Windley BF, Naqvi SM (ed) Archaean geochemistry. Elsevier, Amsterdam, pp 221–240

    Google Scholar 

  • Oehler JH (1977) Microflora of the H.Y.C. Pyritic Shale Member of the Barney Creek Formation (McArthur Group), Middle Proterozoic of northern Australia. Al-cheringa 1: 315–349

    Google Scholar 

  • Park RG (1980) Origin of horizontal structure in high-grade Archaean terrains. In: Glover JE, Groves DI (ed) Archaean geology, 2nd Int Symp, Perth, pp 481–490

    Google Scholar 

  • Paul J (1988) Stromatolite bioherms and biostroms (Zech-stein Basin, central Europe). Terra Cognite 8: 220 (Abstr)

    Google Scholar 

  • Pidgeon RT (1978) 3450 m.y. old volcanics in the Archaean layered greenstone succession of the Pilbara Block, Western Australia. Earth Planet Sci Lett 37:421–428

    Google Scholar 

  • Playford PE (1980) Environmental controls on the morphology of modern stromatolites at Hamelin Pool, Western Australia. Geol Surv West Aust Annu Rep 1979:73–77

    Google Scholar 

  • Playford PE, Cockbain AE, Druce EC, Wray JL (1976) Devonian stromatolites from the Canning Basin, Western Australia. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 543–563

    Google Scholar 

  • Pratt BR (1982) Stromatolite decline -a reconsideration. Geology 10:512–515

    Google Scholar 

  • Pratt BR, James NP (1982) Cryptalgal-metazoan bioherms of Early Ordovician age in the St. George Group, Western Newfoundland. Sedimentology 29: 543–570

    Google Scholar 

  • Riding R, Voronova L (1984) Assemblages of calcareous algae near the Precambrian Cambrian boundary in Siberia and Mongolia. Geol Mag 121:205–210

    Google Scholar 

  • Runnegar B, PojetaJ, Taylor ME, Collins D (1979) New species of the Cambrian and Ordovician chitons Matth-evia and Chelodes from Wisconsin and Queensland: evidence for the early history of polyplacophoran mol-lusks. J Paleontol 53: 1374–1394

    Google Scholar 

  • Schopf JW (1977) Biostratigraphic usefulness of stromatoli-tic Precambrian microbiotas. Precambrian Res 5: 143– 173

    Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3 to 3.5 Ga-old) fossil microorganisms from the Warrawoona Group, Western Australia. Science 237: 70–73

    Google Scholar 

  • Schopf JW, Sovietov YuK (1976) Microfossils in Conophy-ton from the Soviet Union and their bearing on Precambrian biostratigraphy. Science 193: 143–146

    Google Scholar 

  • Semikhatov MA (1976) Experience of stromatolite studies in the U.S.S.R. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 337–357

    Google Scholar 

  • Sepkoski JJ Jr (1978) A kinetic model of Phanerozoic tax-onomic diversity. I. Analysis of marine order. Paleobi-ology 4:223–251

    Google Scholar 

  • Sepkoski JJ Jr (1979) A kinetic model of Phanerozoic tax-onomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222–251

    Google Scholar 

  • Shapovalova IG (1968) Onovoi gruppe stromatolitov Jacutophyton iz verkhnego proterozoya vostochnogo sklona Aldanskoi anteklizy. In: Tektonika, Stratigrafíya, i Litologiya Osadochnykh Formatsii, Yakutia. Dokl Nauk Sess Yakutsk Fil Sib Otd, Akad Nauk SSSR, 17:97–103

    Google Scholar 

  • Southgate PN (1986) Depositional environment and mechanism of preservation of microfossils, Upper Proterozoic Bitter Springs Formation, Australia. Geology 14: 638– 686

    Google Scholar 

  • Strother PK (1989) Pre-metazoan life. In: Allen KC, Briggs DEG (eds) Evolution and the fossil record. Bel-haven, London, pp51–72

    Google Scholar 

  • Summons RE, Powell TG, Boreham CJ (1988) Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia. III. Composition of extractable hydrocarbons. Geochim Cosmochim Acta 52:1747–1763

    Google Scholar 

  • Tiffney BH (ed) (1985) Geological factors and the evolution of plants. Yale Univ Press, New Haven, 294pp

    Google Scholar 

  • Valentine JW (ed) (1986) Phanerozoic diversity patterns: profiles in macroevolution. Princeton Univ Press, Princeton, 441 p

    Google Scholar 

  • Vidal G, Knoll AH (1982) Radiations and extinctions of plankton in the Late Proterozoic and Early Cambrian. Nature (London) 297: 57–60

    Google Scholar 

  • Vlasov FYa (1977) Dokembrickiikie stromatolity iz sat-kinskoisvity yuzhnogo urala. Akad Nauk SSSR, Ural Nauch Tsentr Materialy Paleontologii Srednego Paleozoya Urala Sibiri, pp 101–128

    Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ, Walter MR (1983) Environmental evolution of the Archean-Early Proterozoic Earth. In: Schopf JW (ed) The earth’s earliest biosphere: its origin and evolution. Princeton Univ Press, Princeton, pp260– 290

    Google Scholar 

  • Walsh MM, Lowe DM (1985) Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature (London) 314:530–532

    Google Scholar 

  • Walter MR (1972 a) A hot spring analog for the depositional environment of Precambrian banded iron formations of the Lake Superior region. Econ Geol 67:965–972

    Google Scholar 

  • Walter MR (1972 b) Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Spec Pap Palaeontology 11: 190 pp

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: evidence of the Earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton Univ press, Princeton, pp 187–213

    Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Res 29:149–174

    Google Scholar 

  • Walter MR, Bauld J, Brock TD (1976) Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 273–310

    Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400-3,500 Myr old from the North Pole area, Western Australia. Nature (London) 284:443–445

    Google Scholar 

  • Wang Fuxing, Zhang Xuanyang, Guo Ruihuan (1983) The Sinian microfossils from Jinning, Yunnan. South China. Precambrian Res 23: 133–175

    Google Scholar 

  • Winsborough BM, Golubic S (1987) The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J Phycol 23: 195–201

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Zhang Zhongying (1986) Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China. J Micropalaeontol 5:9–16

    Google Scholar 

  • Zhu Shixing, Xu Chaolei, Gao Jianping (1987) Early Proterozoic stromatolites from Wutai Mt. and its adjacent regions. Bull Tianjin Inst Geol Min Res 17: 1–221 [in Chinese with English summary]

    Google Scholar 

  • Zhuravleva ZA (1964) Onkolity i katagrafii rifeya i nizhnego kembriya Sibiri i ikh stratigrafícheskoe znachenie. Tr Geol Inst Akad Nauk SSSR 114:73pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awramik, S.M. (1992). The History and Significance of Stromatolites. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics