Skip to main content

Fluorescence Lifetime Imaging and Application to Ca2+ Imaging

  • Chapter
Fluorescence Spectroscopy

Abstract

Fluorescence spectroscopy is widely utilized for research in the biosciences [1–8]. These applications have been focused on two divergent disciplines, time-resolved fluorescence and fluorescence microscopy. In time-resolved measurements one takes advantage of the high information content of the time-dependent decays to uncover details about the structure and dynamics of macromolecules [4]. Such measurements are performed almost exclusively using ps laser sources coupled with high speed “single-pixel” photodetectors. While some parallel measurements have been reported, these have been for a linear array detector providing wavelength rather than spatial resolution [9]. In contrast, fluorescence microscopy is most often used to determine the localization (intensity) of the species of interest, usually of proteins or other macromolecules [6, 7]. The acquisition of two-dimensional (2D) fluorescence images is preferentially accomplished with low-speed accumulating detectors [10], which are not capable of quantifying ps-ns fluorescence decays. Consequently, the high information content of time-resolved fluorescence is not usually available for studies of microscopic biological samples. This is particularly disadvantageous when one considers the sensitivity of fluorescence decay times to chemical and environmental factors of interest, such as local pH, cation concentration, oxygen, and polarity, to name a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CCD:

charge coupled device

DMSS:

4-dimethylamino-ω-methylsulfonyl-trans-styrene

FD:

frequency-domain

FLIM:

fluorescence lifetime imaging

9-CA:

9-cyanoanthracene

Per:

perylene

POPOP:

p-bis[2-(5-phenyloxazazolyl)]benzene

EGTA:

[ethylene bis(oxyethylene-nitrilo)]tetraacetic acid

QUIN-2:

2-{ [2-bis-(carboxymethyl)-amino-5-methylphenoxy]-methyl}-6-methoxy-8-bis-(carboxymethyl)-aminoquinoline

References

  1. Dewey TG (ed) (1991) Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum, New York

    Google Scholar 

  2. Jameson DM, Reinhart G (1989) Fluorescent biomolecules. Plenum, New York

    Google Scholar 

  3. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York, 496 pp

    Google Scholar 

  4. Lakowicz JR (ed) (1990) Time-Resolved laser spectroscopy in biochemistry II. SPIE Press, Washington, DC, 850 pp

    Google Scholar 

  5. Demchenko AP (1986) Ultraviolet spectroscopy of proteins. Springer, Berlin Heidelberg, New York

    Book  Google Scholar 

  6. Wang Y, Taylor DL (eds) (1989) Fluorescence microscopy of living cells in culture, Part A: Fluorescent Analogs, Labeling Cells, and Basic Microscopy. Academic, New York, 503 pp

    Google Scholar 

  7. Taylor DL, Wang Y (eds) (1989) Fluorescence microscopy of living cells in culture, Part B: Quantitative Analogs, Microscopy - Imaging and Spectroscopy. Academic, New York

    Google Scholar 

  8. Inoué S (1986) Video microscopy. Plenum, New York, 584 pp

    Google Scholar 

  9. Gratton E, Feddersen B, vandeVen M (1990). Parallel acquisition of fluorescence decay using array detectors. In: Lakowicz JR (ed) Time-resolved laser spectroscopy in Biochemistry II. Proc of SPIE, 1204: 21

    Google Scholar 

  10. Hiraoka Y, Sedat JW, Agard DA (1987) Science. 23: 36

    Article  Google Scholar 

  11. Keating SM, Wensel TG (1990). Nanosecond fluorescence microscopy of single cells. In: Lakowicz JR (ed) Time-resolved laser spectroscopy in biochemistry II; Proc. of SPIE, 1204: 42–48.

    Google Scholar 

  12. Arndt-Jovin DJ, Latt SA, Striker G, Jovin TM (1979) J of Histochem and Cytochem 27: 87

    Article  CAS  Google Scholar 

  13. Wang SF, Kitajima S, Uchida T, Coleman DM, Minami S (1990). Applied Spectroscopy. 44: 25

    Article  CAS  Google Scholar 

  14. Wang XF, Uchida T, Minami S (1989) Applied Spectroscopy. 43: 840

    Article  CAS  Google Scholar 

  15. Grynkiewicz G, Poenie M, Tsien RY (1985) J of Biol Chem 260: 3440

    CAS  Google Scholar 

  16. Lakowicz JR, Cherek HC (1981) Journal of Biochemical and Biophysical Methods 5: 19

    Article  CAS  Google Scholar 

  17. Lakowicz JR, Cherek HC (1981) J Biol Chemistry 256: 6348

    CAS  Google Scholar 

  18. Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt K, Johnson ML (1992) Fluorescence lifetime imaging. Biophysical Journal 202: 316.

    CAS  Google Scholar 

  19. Lakowicz JR, Berndt KW (1991) Rev of Sci Instr 67: 1727

    Article  Google Scholar 

  20. Gryczynski I, Lakowicz JR unpublished observation.

    Google Scholar 

  21. Lakowicz JR, Cherek H, Baiter A (1981) Journal of Biochemical and Biophysical Methods 5: 131

    Article  CAS  Google Scholar 

  22. Lakowicz JR, Maliwal BP (1985) Biophysical Chemistry 21: 61

    Article  CAS  Google Scholar 

  23. Lakowicz JR, Laczko G, Gryczynski I (1986) Reviews of Scientific Instrumentation 57: 2499

    Article  CAS  Google Scholar 

  24. Laczko G, Lakowicz JR, Gryczynski I, Gryczynski Z, Malak H (1990) Reviews of Scientific Instruments 61: 2331

    Article  CAS  Google Scholar 

  25. Tsien R, Pozzan T (1989) Methods of Enzymology 172: 230

    Article  CAS  Google Scholar 

  26. Tsien R (1980) Biochem 19: 2396

    Article  CAS  Google Scholar 

  27. Miyoshi N, Hara K, Kimura S, Nakanishi K, Fukuda M (1991) Photochemistry and Photo- biology 53: 415

    Article  CAS  Google Scholar 

  28. Komada H, Nakabayashi H, Nakano H, Hara M, Yoshida T, Takanari H, Izutsu K (1989) Cell Structure and Function 14: 141

    Article  CAS  Google Scholar 

  29. Moore ED, Becker PL, Fogarty KE, Williams DA, Fay FS (1990) Cell Calcium 11: 157

    Article  CAS  Google Scholar 

  30. Roe MW, Lemasters JJ, Herman B (1990) Cell Calcium 11: 63

    Article  CAS  Google Scholar 

  31. Goldman WF, Bova S, Blaustein MP (1990) Cell Calcium 11: 221

    Article  CAS  Google Scholar 

  32. Keating SM, Wensel TG (1991) Biophys J 59: 186

    Article  CAS  Google Scholar 

  33. Chen RF (1974) Anal Biochemistry 57: 593

    Article  CAS  Google Scholar 

  34. Tsien RY (1989) Methods in Cell Biology 30: 127

    Article  CAS  Google Scholar 

  35. Illsley NP, Verkman AS (1987) Biochemistry 26: 1215

    Article  CAS  Google Scholar 

  36. Kautsky H (1930) Trans Faraday Soc 35: 262

    Google Scholar 

  37. Lakowicz JR, Joshi NB, Johnson ML, Szmacinski H, Gryczynski I (1987) Journal of Biological Chemistry 262: 10907

    CAS  Google Scholar 

  38. Lakowicz JR, Weber G (1973) Biochemistry 12: 4161

    Article  CAS  Google Scholar 

  39. Laws JR and Brand L (1979) J Phys Chem 83: 795

    Article  CAS  Google Scholar 

  40. Gafni A and Brand L (1978) Chem Phys Lett 58: 346

    Article  CAS  Google Scholar 

  41. Jameson DM, Weber G (1981) The Journal of Physical Chemistry 85: 95

    Article  Google Scholar 

  42. Forster T (1948) Ann Phys (Leipzig). 2: 55 (Translated by Knox RS)

    Article  CAS  Google Scholar 

  43. Stryer L (1978) Ann Rev Biochem 47: 819

    Article  CAS  Google Scholar 

  44. Steinberg IZ (1971) Ann Rev Biochem 40: 83

    Article  CAS  Google Scholar 

  45. Eftink MR, Ghiron C (1981) Anal Biochem 114: 199

    Article  CAS  Google Scholar 

  46. Lehrer SS (1971) Biochemistry 10: 3254

    Article  CAS  Google Scholar 

  47. Ware WR, Watt D, Holmes JD (1974) J Amer Chem Soc 96: 7853

    Article  CAS  Google Scholar 

  48. Leto TL, Roseman MA, Holloway PW (1980) Biochemistry 19: 1911

    Article  CAS  Google Scholar 

  49. Thulborn KR, Sawyer WH (1978) Biochim Biophys Acta 511: 125

    Article  CAS  Google Scholar 

  50. Weisblum B, de Haseth PL (1971) Proc Nat Acad Sci USA 69: 629

    Article  Google Scholar 

  51. Arndt-Jovin D, Latt SA, Striker G, Jovin TM (1979) The Journal of Histochemistry and Cytochemistry 27: 87

    Article  CAS  Google Scholar 

  52. Steiner RF, Kubota Y (1983) In: Fluorescent Dye-Nucleic Acid Complexes. Excited States of Biopolymers. Plenum Press, New York, p 203

    Google Scholar 

  53. Scott TG, Spencer RD, Leonard NJ, Weber G (1970) J Amer Chem Soc 92: 687

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lakowicz, J.R., Szmacinski, H., Nowaczyk, K., Berndt, K.W., Johnson, M.L. (1993). Fluorescence Lifetime Imaging and Application to Ca2+ Imaging. In: Wolfbeis, O.S. (eds) Fluorescence Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77372-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77372-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77374-7

  • Online ISBN: 978-3-642-77372-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics