Skip to main content

Proteolytic Inactivation of Neurohormonal Peptides in the Gastrointestinal Tract

  • Chapter
Gastrointestinal Regulatory Peptides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 106))

Abstract

The gastrointestinal tract is a major site of production and inactivation of neurohormonal peptides. While biochemical and morphological aspects of the synthesis of gastrointestinal peptides have been studied in detail, relatively little work has been done to investigate the mechanisms by which these peptides are degraded following release. The neurohormonal peptides discussed in this article have different cellular distributions both along and within the different layers of the stomach and gut. Consequently, an analysis of the mechanisms by which these peptides are inactivated must take into account the microenvironment into which they are released.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker GR, Molineaux CJ, Orlowski M (1987) Synaptosomal membrane-bound form of endopeptidase 24.15 generates Leu-enkephalin from dynorphin1–8, α- and β-neoendorphin, and Met-enkephalin from Met-enkephalin-Arg6-Gly7-Leu8. J Neurochem 48:284–292

    Article  PubMed  CAS  Google Scholar 

  • Allen M, McMartin C, Peters GE, Wade R (1984) The mechanism of degradation of cyclo(-Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Gaba-) and the relative stabilities of this and other octapeptide somatostatin analogues in rat intestinal juice. Regul Pept 10:29–35

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Kajiwara M, Oka T (1984) The role of bestatin-sensitive aminopeptidase, angiotensin-converting enzyme and thiorphan sensitive “enkephalinase” in the potency of enkephalins in the guinea pig ileum. Jpn J Pharmacol 36:59–65

    Article  PubMed  CAS  Google Scholar 

  • Barber DL, Buchan AMJ, Walsh JH, Soll AH (1986) Isolated canine ileal mucosal in short-term culture: a model for study of neurotensin release. Am J Physiol 250:G374–G384

    PubMed  CAS  Google Scholar 

  • Barclay RK, Phillipps MA (1980) Inhibition of enkephalin-degrading aminopeptidase activity by certain peptides. Biochem Biophys Res Commun 96:1732–1738

    Article  PubMed  CAS  Google Scholar 

  • Barelli H, Vincent JP, Checler F (1988) Peripheral inactivation of neurotensin. Isolation and characterization of a metallopeptidase from rat ileum. Eur J Biochem 175:481–489

    Article  PubMed  CAS  Google Scholar 

  • Barelli H, Ahmad S, Kostka P, Fox JET, Daniel EE, Vincent JP, Checler F (1989) Neuropeptide-hydrolysing activities in synaptosomal fractions from dog ileum myenteric, deep muscular and submucous plexi. Their participation in neurotensin inactivation. Peptides 10:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Benajiba A, Maroux S (1980) Purification and characterization of an aminopeptidase A from hog intestinal brush border membranes. Eur J Biochem 107:381–388

    Article  PubMed  CAS  Google Scholar 

  • Bunnett NW, Mogard M, Orloff MS, Corbet HJ, Reeve JR, Walsh JH (1984) Catabolism of neurotensin in interstitial fluid of the rat stomach. Am J Physiol 246:G675–G682

    PubMed  CAS  Google Scholar 

  • Bunnett NW, Debas HT, Turner AJ, Kobayashi R, Walsh JH (1988a) Metabolism of gastrin and cholecystokinin by endopeptidase 24.11 from the pig stomach. Am J Physiol 255:G676–G678

    PubMed  CAS  Google Scholar 

  • Bunnett NW, Turner AJ, Hryszko J, Kobayashi R, Walsh JH (1988b) Isolation of endopeptidase-24.11 (EC 3.4.24.11, “enkephalinase”) from the pig stomach. Gastroenterology 95:952–957

    PubMed  CAS  Google Scholar 

  • Bunnett NW, Walsh JH, Debas HT (1990) Metabolism of enkephalin in the stomach wall of rats. Am J Physiol 258:G143–G151

    PubMed  CAS  Google Scholar 

  • Bunning P, Riordan JF (1983) Activation of angiotensin converting enzyme by monovalent anions. Biochemistry 22:110–116

    Article  PubMed  CAS  Google Scholar 

  • Bunning P, Holmquist B, Riordan JF (1983) Substrate specificity and kinetic characteristics of angiotensin converting enzyme. Biochemistry 22:103–110

    Article  PubMed  CAS  Google Scholar 

  • Chaillet P, Marcais-Collado H, Costentin J, Yi CC, de la Baume S, Schwartz JC (1983) Inhibition of enkephalin metabolism by, and antinociceptive activity of, bestatin, an aminopeptidase inhibitor. Eur J Pharmacol 86:329–336

    Article  PubMed  CAS  Google Scholar 

  • Checler F, Vincent JP, Kitabgi P (1986) Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes. J Biol Chem 261:11274–11281

    PubMed  CAS  Google Scholar 

  • Checler F, Ahmad S, Kostka P, Barelli H, Kitabgi P, Fox JET, Kwan CY, Daniel EE, Vincent JP (1987a) Peptidases in dog-ileum circular and longitudinal smooth muscle plasma membranes. Eur J Biochem 166:461–468

    Article  PubMed  CAS  Google Scholar 

  • Checler F, Barelli H, Kwan CY, Kitabgi P, Vincent JP (1987b) Neurotensin-metabolizing peptidases in rat fundus plasma membranes. J Neurochem 49:507–512

    Article  PubMed  CAS  Google Scholar 

  • Checler F, Kostolanska B, Fox JA (1988) In vivo inactivation of neurotensin in dog ileum: major involvement of endopeptidase 24.11. J Pharmacol Exp Ther 244:1040–1043

    PubMed  CAS  Google Scholar 

  • Chipkin RE, Berger JG, Billard W, Lorio IC, Chapman R, Barnett A (1988) Pharmacology of SCH 34826, an orally active enkephalinase inhibitor analgesic. J Pharmacol Exp Ther 245:829–838

    PubMed  CAS  Google Scholar 

  • Chu TG, Orlowski M (1984) Active-site directed N-carboxymethyl peptide inhibitors of a soluble metalloendopeptidase from rat brain. Biochemistry 23:3598–3603

    Article  PubMed  CAS  Google Scholar 

  • Churchill L, Bausback HH, Gerritsen ME, Ward PE (1987) Metabolism of opioid peptides by cerebral microvascular aminopeptidase M. Biochim Biophys Acta 923:35–41

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM, Sheehan L (1983) Conversion of substance P to C-terminal fragments in human plasma. Regul Pept 7:335–345

    Article  PubMed  CAS  Google Scholar 

  • Danielsen EM, Vyas JP, Kenny AJ (1980) A neutral endopeptidase in the micro villar membrane of pig intestine. Biochem J 191:645–648

    PubMed  CAS  Google Scholar 

  • Defendini R, Zimmerman EA, Weare JA, Alhenc-Gelas F, Erdos EG (1982) Hydrolysis of enkephalins by human converting enzyme and localization of the enzyme in neuronal components of the brain. In: Costa E, Trabucchi M (eds) Regulatory peptides: from molecular biology to function. Raven, New York, pp 271–280

    Google Scholar 

  • De la Baume S, Yi CC, Schwartz JC, Chaillet P, Marcais-Collado H, Costentin J (1983) Participation of both “enkephalinase” and aminopeptidase activities in the metabolism of endogenous enkephalins. Neuroscience 8:143–151

    Article  PubMed  Google Scholar 

  • Deschodt-Lanckman M, Pauwels S, Najdovski T, Dimaline R, Dockray GJ (1988) In vitro and in vivo degradation of human gastrin by endopeptidase 24.11. Gastroenterology 94:712–21

    PubMed  CAS  Google Scholar 

  • Devault A, Lazure C, Nault C, Le Moual H, Scidah NG, Chretein M, Kahn P, Powell J, Mallet J, Beaumont A, Roques BP, Crine P, Boileau G (1987) Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J 6:1317–1322

    PubMed  CAS  Google Scholar 

  • Devault A, Nault C, Zollinger M, Fournie-Zaluski MC, Roques B, Crine P, Boileau G (1988a) Expression of neutral endopeptidase (enkephalinase) in heterologous COS-1 cells. J Biol Chem 263:4033–4040

    PubMed  CAS  Google Scholar 

  • Devault A, Sales V, Nault G, Beaumont A, Roques B, Crine P, Boileau G (1988b) Exploration of the catalytic site of endopeptidase 24.11 by site-directed mutagenesis. Histidine residues 583 and 587 are essential for catalysis. FEBS Lett 231:54–58

    Article  PubMed  CAS  Google Scholar 

  • Djokic TD, Sekizawa K, Borson DB, Nadel JA (1989) Neutral endopeptidase inhibitors potentiate substance P-induced contraction in gut smooth muscle. Am J Physiol 256:G39–G43

    PubMed  CAS  Google Scholar 

  • Dockray GJ, Gregory RA, Tracy HJ, Zhu WY (1982) Postsecretory processing of heptadecapeptide gastrin: conversion to C-terminal immunoreactive fragments in the circulation of the dog. Gastroenterology 83:224–232

    PubMed  CAS  Google Scholar 

  • Erdos EG (1987) The angiotensin I-converting enzyme. Lab Invest 56:345–348

    PubMed  CAS  Google Scholar 

  • Erdos EG, Skidgel RA (1989) Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 3:145–151

    PubMed  CAS  Google Scholar 

  • Ferris CF, Carraway RE, Hammer RA, Leeman SE (1985) Release and degradation of neurotensin during perfusion of rat small intestine with lipid. Regul Pept 12:101–111

    Article  PubMed  CAS  Google Scholar 

  • Fulcher IS, Matsas R, Turner AJ, Kenny A J (1982) Effect of inhibitors of kidney neutral endopeptidase and enkephalin hydrolysis by synaptic membranes. Biochem J 203:519–522

    PubMed  CAS  Google Scholar 

  • Fulcher IS, Chaplin MF, Kenny AJ (1983) Endopeptidase-24.11 purified from pig intestine is differently glycosylated from that in kidney. Biochem J 215:317–323

    PubMed  CAS  Google Scholar 

  • Geary LE, Wiley KS, Scott WL, Cohen ML (1982) Degradation of exogenous enkephalin in the guinea-pig ileum: relative importance of aminopeptidase, enkephalinase and angiotensin converting enzyme activity. J Pharmacol Exp Ther 221:104–111

    PubMed  CAS  Google Scholar 

  • Gee NS, Kenny AJ (1987) Proteins of the kidney micro villar membrane. Enzymic and molecular properties of aminopeptidase W. Biochem J 246:97–102

    PubMed  CAS  Google Scholar 

  • Gee NS, Matsas R, Kenny AJ (1983) A monoclonal antibody to kidney endopeptidase-24.11. Biochem J 214:377–386

    PubMed  CAS  Google Scholar 

  • Giros B, Gros C, Solhonne B, Schwartz B (1985) Characterization of amino-peptidases responsible for inactivating endogenous [Met5] enkephalin in brain slices using peptidase inhibitors and anti-aminopeptidase M antibodies. Mol Pharmacol 29:281–287

    Google Scholar 

  • Goetzel EJ, Sreedharan SP, Turck CW, Bridenbaugh R, Malfroy B (1989) Preferential cleavage of amino- and carboxyl-terminal oligopeptides from vasoactive intestinal polypeptide by human recombinant enkephalinase (neutral endopeptidase, EC 3.4.24.11). Biochem Biophys Res Commun 158:850–854

    Article  Google Scholar 

  • Gossrau R (1979) Peptidasen II. Zur Lokalisation der Dipeptidylpeptidase IV (DPP IV). Histochemische und biochemische Untersuchung. Histochemistry 60:231–248

    Article  PubMed  CAS  Google Scholar 

  • Graf L, Paldi A, Patthy A (1985) Action of neutral metalloendopeptidase (“enkephalinase”) on β-endorphin. Neuropeptides 6:13–19

    Article  PubMed  CAS  Google Scholar 

  • Gray GM, Santiago NA (1977) Intestinal surface amino-oligopeptidases. I. Isolation of two weight isomers and their subunits from rat brush border. J Biol Chem 252:4922–4928

    PubMed  CAS  Google Scholar 

  • Hammer RA, Carraway RE, Leeman SE (1982) Elevation of plasma neurotensin-like immunoreactivity after a meal. J Clin Invest 70:74–81

    Article  PubMed  CAS  Google Scholar 

  • Harbeck HT, Mentlein R (1991) Aminopeptidase P from rat brain. Purification and action on bioactive peptides. Eur J Biochem 198:451–458

    Article  PubMed  CAS  Google Scholar 

  • Hazato T, Shimamura M, Kase R, Iijima M, Katayama T (1985) Separation of enkephalin-degrading enzymes from longitudinal muscle layer of bovine small intestine. Biochem Pharmacol 34:3179–3183

    Article  PubMed  CAS  Google Scholar 

  • Hooper NM, Turner AJ (1985) Neurokinin B is hydrolysed by synaptic membranes and by endopeptidase-24.11 (“enkephalinase”) but not by angiotensin converting enzyme. FEBS Lett 190:133–136

    Article  PubMed  CAS  Google Scholar 

  • Hooper NM, Turner AJ (1987) Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J 241:625–633

    PubMed  CAS  Google Scholar 

  • Hooper NM, Turner AJ (1988) Ectoenzymes of the kidney microvillar membrane. Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Lett 229:340–344

    Article  PubMed  CAS  Google Scholar 

  • Hooper NM, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides. Neurokinin A (substance K) is a substrate for endopeptidase-24.11 but not for peptidyl dipeptidase A (angiotensin-converting enzyme). Biochem J 231: 357–361

    PubMed  CAS  Google Scholar 

  • Hooper NM, Hyrszko J, Turner AJ (1990) Purification and characterization of pig kidney aminopeptidase P — a glycosyl-phosphatidylinositol-anchored ectoenzyme. Biochem J 267:509–515

    PubMed  CAS  Google Scholar 

  • Jensen RT, Lemp GF, Gardiner JD (1980) Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc Natl Acad Sci USA 77:2079–2083

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Suzuki T (1971) Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffi. Isolation of five bradykinin potentiators and the amino acid sequence of two of them, potentiators B and C. Biochemistry 10:972–980

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Nagatsu T, Fukasawa K, Harada M, Nagatsu I, Sakakibara S (1978) Successive cleavage of N-terminal Arg1-Pro2 and Lys3-Pro4 from substance P but no release of Arg1-Pro2 from bradykinin by X-Pro dipeptidyl aminopeptidase. Biochim Biophys Acta 525:417–422

    PubMed  CAS  Google Scholar 

  • Kenny AJ, Booth AG, George SG, Ingram J, Kershaw D, Wood EJ, Young AR (1976) Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. Biochem J 155:169–182

    Google Scholar 

  • Kohama Y, Matsumoto S, Oka H, Teramoto T, Okabe M, Mimura T (1988) Isolation of angiotensin-converting enzyme inhibitor from tuna muscle. Biochem Biophys Res Commun 155:332–337

    Article  PubMed  CAS  Google Scholar 

  • Lasch J, Koelsch R, Steinmetzer T, Neumann U, Demuth HU (1988) Enzymic properties of intestinal aminopeptidase P: a new continuous assay. FEBS Lett 227:171–174

    Article  PubMed  CAS  Google Scholar 

  • Malfroy B, Schofeld PR, Kuang WJ, Seeburg PH, Mason AJ, Henzel WJ (1987) Molecular cloning and amino acid sequence of rat enkephalinase. Biochem Biophys Res Commun 144:59–66

    Article  PubMed  CAS  Google Scholar 

  • Malfroy B, Kuang WJ, Seeburg PH, Mason AJ, Schofield PR (1988) Molecular cloning and amino acid sequence of human enkephalinase (neutral endo-peptidase). FEBS Lett 229:206–210

    Article  PubMed  CAS  Google Scholar 

  • Matsas R, Fulcher IS, Kenny AJ, Turner AJ (1983) Substance P and [Leu5]-enkephalin are hydrolysed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci USA 80:3111–3115

    Article  PubMed  CAS  Google Scholar 

  • Matsas R, Kenny AJ, Turner AJ (1984a) The metabolism of neuropeptides. The hydrolysis of peptides, including enkephalins, tachykinins and their analogues, by endopeptidase-24.11. Biochem J 223:433–440

    PubMed  CAS  Google Scholar 

  • Matsas R, Turner AJ, Kenny AJ (1984b) Endopeptidase-24.11 and aminopeptidase activity in brain synaptic membranes are jointly responsible for the hydrolysis of cholecystokinin octapeptide (CCK-8). FEBS Lett 175:124–128

    Article  PubMed  CAS  Google Scholar 

  • Matsas R, Stephenson SL, Hryszko J, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides. Phase separation of synaptic membrane preparations with Triton X-114 reveals the presence of aminopeptidase N. Biochem J 231:445–449

    CAS  Google Scholar 

  • McMartin C, Purdon G (1978) Early fate of somatostatin in the circulation of the rat after intravenous injection. J Endocrinol 77:67–74

    Article  CAS  Google Scholar 

  • Molineaux CJ, Lasdun A, Michaud C, Orlowski M (1988) Endopeptidase-24.15 is the primary enzyme that degrades luteinizing hormone releasing hormone both in vitro and in vivo. J Neurochem 51:624–633

    Article  PubMed  CAS  Google Scholar 

  • Najdovski T, Collette N, Deschodt-Lankman M (1985) Hydrolysis of the C-terminal octapeptide of cholecystokinin by rat kidney membranes: characterization of the cleavage by solubilized endopeptidase-24.11. Life Sci 37:827–834

    Article  PubMed  CAS  Google Scholar 

  • Nau R, Schafer G, Conlon JM (1985) Proteolytic inactivation of substance P in the epithelial layer of the intestine. Biochem Pharmacol 34:4019–4023

    Article  PubMed  CAS  Google Scholar 

  • Nau R, Schafer G, Deacon CF, Cole T, Agoston DV, Conlon JM (1986) Proteolytic inactivation of substance P and neurokinin A in the longitudinal muscle layer of guinea pig small intestine. J Neurochem 47:856–864

    Article  PubMed  CAS  Google Scholar 

  • Nau R, Ballmann M, Conlon JM (1987) Binding of vasoactive intestinal polypeptide to dispersed enterocytes results in rapid removal of the NH2-terminal histidyl residue. Mol Cell Endocrinol 52:97–103

    Article  PubMed  CAS  Google Scholar 

  • Orloff MS, Turner AJ, Bunnett NW (1986) Catabolism of substance P and neurotensin in the rat stomach wall is susceptible to inhibitors of angiotensin converting enzyme. Regul Pept 14:21–31

    Article  PubMed  CAS  Google Scholar 

  • Orlowski M, Michaud C, Chu T (1983) A soluble metallopeptidase from rat brain. Purification of the enzyme and determination of specificity with synthetic and natural peptides. Eur J Biochem 135:81–88

    Article  PubMed  CAS  Google Scholar 

  • Orlowski M, Michaud C, Molineaux CJ (1988) Substrate-related potent inhibitors of brain metalloendopeptidase. Biochemistry 27:597–602

    Article  PubMed  CAS  Google Scholar 

  • Palmieri FE, Ward PE (1983) Mesentery vascular metabolism of substance P. Biochim Biophys Acta 755:522–525

    Article  PubMed  CAS  Google Scholar 

  • Palmieri FE, Petrelli JJ, Ward PE (1985) Vascular, plasma membrane amino-peptidase M. Metabolism of vasoactive peptides. Biochem Pharmacol 34:2309–2317

    Article  PubMed  CAS  Google Scholar 

  • Peters GE, McMartin C (1982) The breakdown of somatostatin in rat intestinal juice. Scand J Gastroenterol 18 Suppl 82:215–217

    Google Scholar 

  • Power DM, Bunnett N, Dimaline R (1986) Chromatographic and immunochemical studies on postsecretory processing of gastrin in the pig. Am J Physiol 251:G300–G307

    PubMed  CAS  Google Scholar 

  • Power DM, Bunnett N, Turner AJ, Dimaline R (1987) Degradation of endogenous heptadecapeptide gastrin by endopeptidase 24.11 in the pig. Am J Physiol 253:G33–G39

    PubMed  CAS  Google Scholar 

  • Power DM, Dimaline R, Balaspiri L, Dockray GJ (1988) A novel gastrin-processing pathway in mammalian antrum. Biochim Biophys Acta 954:141–147

    Article  PubMed  CAS  Google Scholar 

  • Praissman M, Fara JW, Praissman LA, Berkowitz JM (1982) Preparation of an N-acetyl-octapeptide of cholecystokinin. The role of N-acetylation in protecting the octapeptide from degradation by smooth muscle tissues. Biochim Biophys Acta 716:240–248

    Article  PubMed  CAS  Google Scholar 

  • Rao RK (1991) Biologically active peptides in the gastrointestinal lumen. Life Sci 48:1685–1704

    Article  PubMed  CAS  Google Scholar 

  • Rhoden KJ, Barnes PJ (1989) Epithelial modulation of non-adrenergic, non-cholinergic and vasoactive intestinal peptide-induced responses: role of neutral endopeptidase. Eur J Pharmacol 171:247–250

    Article  PubMed  CAS  Google Scholar 

  • Roques BP, Beaumont A (1990) Neutral endopeptidase-24.11 inhibitors: from analgesics to antihypertensives. Trends Pharmacol Sci 11:245–249

    Article  PubMed  CAS  Google Scholar 

  • Sakurada C, Yokosawa H, Ishii SI (1990) The degradation of somatostatin by synaptic membrane of rat hippocampus is initiated by endopeptidase-24.11. Peptides 11:287–292

    Article  PubMed  CAS  Google Scholar 

  • Schafer G, Nau R, Cole T, Conlon JM (1986a) Specific binding and proteolytic inactivation of bradykinin by membrane vesicles from pig intestinal smooth muscle. Biochem Pharmacol 35:3719–3725

    Article  PubMed  CAS  Google Scholar 

  • Schafer G, Richter G, Conlon JM (1986b) Conversion of somatostatin-28 to somatostatin-14 during maturation of epithelial cells in the porcine jejunum. Biochim Biphys Acta 885:240–247

    Article  CAS  Google Scholar 

  • Shulkes A, Fletcher DR, Hardy KJ (1983) Organ and plasma metabolism of neurotensin in sheep. Am J Physiol 245:E457–E462

    PubMed  CAS  Google Scholar 

  • Schultzberg M, Hokfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said S (1980) Distribution of peptide- and cateeholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: immuno-histochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine β-hydroxylase. Neuroscience 5:689–744

    Article  PubMed  CAS  Google Scholar 

  • Shaw C, Goke R, Bunnett NW, Conlon JM (1987) Catabolism of neurotensin in the epithelial layer of porcine small intestine. Biochim Biophys Acta 924:167–174

    Article  PubMed  CAS  Google Scholar 

  • Skidgel RA, Engelbrecht S, Johnson AR, Erdos EG (1984) Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5:769–776

    Article  PubMed  CAS  Google Scholar 

  • Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P (1988) Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85:9386–9390

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter SM, Thiele EA, Kapiloff MS, Snyder SH (1985) A rat brain isozyme of angiotensin-converting enzyme. Unique specificity for amidated peptide substrates. J Biol Chem 260:9825–9832

    PubMed  CAS  Google Scholar 

  • Terashima H, Rossen AP, Bunnett NW (1991) Purification and characterization of aminopeptidase M from intestinal muscle and mucosa. Gastroenterology 100:A670

    Google Scholar 

  • Thiele EA, Strittmatter SM, Snyder SH (1985) Substance K and substance P as possible endogenous substrates of angiotensin converting enzyme in the brain. Biochem Biophys Res Commun 128:317–324

    Article  PubMed  CAS  Google Scholar 

  • Turkelson CM, Solomon TE, Hamilton J (1990) A cholecystokinin-metabolizing enzyme in rat intestine. Peptides 11:213–219

    Article  PubMed  CAS  Google Scholar 

  • Turner AJ, Matsas R, Kenny AJ (1985) Are there neuropeptide-specific peptidases? Biochem Pharmacol 34:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Turzynski, Mentlein R (1990) Prolyl aminopeptidase from rat brain and kidney. Action on peptides and identification as leucyl aminopeptidase. Eur J Biochem 190:509–515

    Article  PubMed  CAS  Google Scholar 

  • Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo) 29:97–99

    CAS  Google Scholar 

  • Ward PE, Sheridan MA, Hammon KJ, Erdos EG (1980) Angiotensin I converting enzyme (kininase II) of the brush border of the human and swine intestine. Biochem Pharmacol 29:1525–1529

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Cole T, Conlon JM (1986) Specific binding and degradation of somatostatin by membrane vesicles from pig gut. Am J Physiol 250:G679–G685

    PubMed  CAS  Google Scholar 

  • Wei L, Alhenc-Gelas F, Soubrier F, Michaud A, Corvol P, Clauser E (1991) Expression and characterization of recombinant human angiotensin I-converting enzyme. J Biol Chem 266:5540–5546

    PubMed  CAS  Google Scholar 

  • Wyvratt MJ, Tischler MH, Ikeler TJ, Springer JP, Tristam EW, Patchett AA (1983) Bicyclic inhibitors of angiotensin-converting enzyme. In: Hruby VJ, Rich DH (eds) Peptides: structure and function. Pierce Chemical, New York, pp 551–554

    Google Scholar 

  • Yokosawa H, Ogura Y, Ishii SI (1983) Purification and inhibition by neuropeptides of angiotensin-converting enzyme from rat brain. J Neurochem 41:403–410

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Conlon, J.M. (1993). Proteolytic Inactivation of Neurohormonal Peptides in the Gastrointestinal Tract. In: Brown, D.R. (eds) Gastrointestinal Regulatory Peptides. Handbook of Experimental Pharmacology, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77814-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77814-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77816-2

  • Online ISBN: 978-3-642-77814-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics