Skip to main content

Transformation in Lycopersicon esculentum L. (Tomato)

  • Chapter
Plant Protoplasts and Genetic Engineering III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 22))

  • 162 Accesses

Abstract

Cellular genetic manipulations offer new possibilities for breeding tomato. Until the last few years, the introduction of favorable characteristics such as resistance to pathogens, modification of plant habit, and improvement of fruit quality have been carried out by crossing with wild species (Rick 1978). Nevertheless, because of the unilateral or interspecific incompatibility between tomato and its wild relatives, a vast reserve of genetic resources remains unexploited (Rick 1982). Protoplast fusion can be an alternative method for mixing genomes and the development of plant genetic transformation offers new possibilities. Transformation of tomato cultivars was achieved using Ti or Ri plasmid vectors and stable transformants were selected on medium containing kanamycin (Koorneef et al. 1986; McCormick et al. 1986; Shahin et al. 1986). This could be achieved because of the relative facility to regenerate tomato plants from primary expiants. Direct gene transfer procedures are useful for inserting new genes into the genome, as it is not necessary to clone the gene to be transferred into vectors derived from Agrobacterium. In addition, they offer the possibility of performing transient gene expression assays that facilitate comparisons between the strength of promotors that regulate the expression of structural genes (Ou-Lee et al. 1986; Boston et al. 1987), and permit investigation into the interactions between several genes in the same cell (Ecker and Davis 1986). This approach requires an efficient procedure of protoplast culture and plant regeneration. Regeneration of plants from tomato protoplasts still presents several difficulties and makes the use of direct gene transfer techniques less attractive. Direct gene transfer in tomato was first achieved using a calcium-phosphate DNA transformation procedure or a PEG treatment (Koorneef et al. 1986; Jongsma et al. 1987). Toyoda et al. (1989) adapted the microinjection technique to tomato callus cells, but did not succeed in regenerating transformed plants. More recently, Tsukuda et al. (1989) compared the efficiency of promoters in the transient expression of foreign genes introduced in tomato protoplasts by electroporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellini C, Chupeau MC, Guerche P, Vastra G, Chupeau Y (1989a) Transformation of Lycopersicon peruvianum and Lycopersicon esculentum mesophyll protoplasts by electroporation. Plant Sci 65(1):63–76.

    Article  CAS  Google Scholar 

  • Bellini C, Guerche P, Spielmann A, Goujaud J, Lessaint C, Caboche M (1989b) Genetic analysis of transgenic tobacco plants obtained by liposome-mediated transformation: absence of evidence for the mutagenic effect of inserted sequences in sixty characterised transformants. J Hered 80:361–367.

    CAS  Google Scholar 

  • Bellini C, Chupeau MC, Gervais M, Vastra G, Chupeau Y (1990) Importance of myo-inositol, calcium and ammonium for the viability and division of tomato (Lycopersicon esculentum) protoplasts. Plant Cell Tissue Organ Cult 23:27–37.

    Article  CAS  Google Scholar 

  • Boston RS, Becwar MR, Ryan RD, Larkins BA, Hodges TK (1987) Expression from heterologous promotors in electroporated carrot protoplasts. Plant Physiol 83:742–746.

    Article  PubMed  CAS  Google Scholar 

  • Bourgin JP, Chupeau Y, Missonier C (1979) Plant regeneration from mesophyll protoplasts of several Nicotiana species. Physiol Plant 45:288–292.

    Article  CAS  Google Scholar 

  • Cassells AC, Barlass M (1976) Environmental changes in the cell walls of tomato leaves in relation to cell and protoplast release. Physiol Plant 37:239–246.

    Article  CAS  Google Scholar 

  • Cassells AC, Barlass M (1978) A method for the isolation of stable mesophyll protoplasts from tomato leaves throughout the year under standard conditions. Physiol Plant 42:236–242.

    Article  CAS  Google Scholar 

  • Chupeau MC, Bellini C, Guerche P, Maisonneuve B, Vastra G, Chupeau Y (1989) Transgenic plants of lettuce (Lactuca sativa) through direct gene transformation after electroporation of protoplasts. Bio/Technol 7:503–507.

    Article  Google Scholar 

  • Chupeau Y, Bourgin JP, Missonier C, Dorion N, Morel G (1974) PrĂ©paration et culture de protoplastes de divers Nicotiana. CR Acad Sci Paris Ser D 278:1565–1568.

    Google Scholar 

  • Das R, Bagga S, Sopory SK (1987) Involvement of phosphoinositides, calmoduline and glyoxalase-I in cell proliferation in callus cultures of Amaranthus paniculatus. Plant Sci 53:45–51.

    Article  CAS  Google Scholar 

  • Ecker JR, Davis RW (1986) Inhibition of gene expression in plant cells by expression of antisens RNA. Proc Natl Acad Sci USA 83:5372–5376.

    Article  PubMed  CAS  Google Scholar 

  • Ettlinger C, Lehle L (1987) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331:176–178.

    Article  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82:5824–2828.

    Article  PubMed  CAS  Google Scholar 

  • Fromm ME, Taylor LP, Walbot W (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793.

    Article  PubMed  CAS  Google Scholar 

  • Guerche P, Bellini C, Le Moullec JM, Caboche M (1987a) Use of a transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie 69:621–628.

    Article  PubMed  CAS  Google Scholar 

  • Guerche P, Charbonnier M, Jouanin L, Tourneur C, Paszkowski J, Pelletier G (1987b) Direct gene transfer by electroporation in Brassica napus. Plant Sci 52:111–116.

    Article  CAS  Google Scholar 

  • Haberlach GT, Cohen BA, Reichert NA, Baer MA, Towill LE, Helgeson JP (1985) Isolation, culture and regeneration of protoplasts from potato and several related Solanum species. Plant Sci Lett 39:67–74.

    Article  Google Scholar 

  • Haughn GW, Somerville C (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 211:430–435.

    Article  Google Scholar 

  • Hassanpour-Estahbani A, Demarly Y (1984) Plant regeneration from protoplasts of Solanum pennellii: effect of photoperiod applied to donor plants. J Plant Physio. 121:171–174.

    Google Scholar 

  • Holmes DS (1982) Rapid purification of bacterial plasmids and coliphage M13 RF without CsCl centrifugation. Anal Biochem 127:428–433.

    Article  PubMed  CAS  Google Scholar 

  • Jongsma M, Koornneef M, Zabel P, Hille J (1987) Tomato protoplasts DNA transformation: physical linkage and recombination of exogenous DNA sequences. Plant Mol Biol 8:383–394.

    Article  CAS  Google Scholar 

  • Koornneef M, Hanart C, Jongsma M, Toma I, Weide R, Zabel P, Hille J (1986) Breeding of a tomato genotype readily accesible to genetic manipulation. Plant Sci 45:201–208.

    Article  Google Scholar 

  • Masson J, Lancelin D, Bellini C, Lecerf M, Guerche P, Pelletier G (1989) Selection of somatic hybrids between diploid clones of potato (Solanum tuberosum L.) transformed by direct gene transfer. Theor Appl Genet 78:153–159.

    Article  Google Scholar 

  • Masson J, Lecerf M, Rousselle P, Perennec P, Pelletier G (1987) Plant regeneration from protoplasts of diploid potato derived form crosses of Solanum tuberosum with wild Solanum species. Plant Sciences 53:167–176.

    Article  CAS  Google Scholar 

  • Maxon Smith JW, Ritchie DB (1983) A collection of near-isogenic lines of tomato: research tool of the future? Plant Mol Biol Rep 1:41–46.

    Article  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (Lycopersicon esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  Google Scholar 

  • Meyer Y, Abel WO (1975) Budding and division of tobacco protoplasts in relation to pseudo-wall and wall formation. Planta 125:1–13.

    Article  CAS  Google Scholar 

  • Muhlbach HP (1980) Different regeneration potentials of mesophyll protoplasts from cultivated and wild species of tomato. Planta 148:89–96.

    Article  Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation conditions. Plant Mol Biol 8:366–373.

    Article  Google Scholar 

  • Niedz RP, Rutter SM, Handley LW, Sink KC (1985) Plant regeneration from leaf protoplasts of six tomato cultivars. Plant Sci 39:199–204.

    Article  Google Scholar 

  • O’Connel MA, Hanson MR (1985) Somatic hybridisation between Lycopersicon esculentum and Lycopersicon penellii. Theor Appl Genet 70:1–12.

    Google Scholar 

  • Ou-Lee TM, Turgeon R, Wu R (1986) Expression of a foreign gene linked to either a plant virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat and sorghum. Proc Natl Acad Sci USA 84:4870–4874.

    Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722.

    PubMed  CAS  Google Scholar 

  • Rick CM (1978) The tomato. Sci Am 239:76–87.

    Article  Google Scholar 

  • Rick CM (1982) The potential of exotic germplasm for the tomato improvement. In: Vasil I, Scowcroft W, Frey K (eds) Plant improvement and somatic cells genetics. Academic Press, London New York, pp 1–28.

    Google Scholar 

  • Seguin M, Lalonde M (1988) Gene transfer by electroporation in Betulaceae protoplasts: Alnus incana. Plant Cell Rep 7:367–370.

    CAS  Google Scholar 

  • Shahin EA (1985) Totipotency of tomato protoplasts. Theor Appl Genet 69:235–240.

    Article  CAS  Google Scholar 

  • Shahin EA, Sukhapinda K, Simpson RB, Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotype harbor binary vector T-DNA, but no Ri-plasmid T-DNA. Theor Appl Genet 72:770–777.

    Article  CAS  Google Scholar 

  • Shillito RD, Saul MW, Paszkowski J, Muller M, Potrykus I (1985) High efficiency of direct gene transfer to plants. Bio/Technol 3 1099–1105.

    Article  Google Scholar 

  • Tabaeizedeh Z, Bunisset-Bergounioux C, Perennes C (1984) Environmental growth conditions of protoplast source plants: effect on subsequent protoplast division in two tomato species. Physiol VĂ©g 22(2): 223–229.

    Google Scholar 

  • Tan M, Rietveld E, van Marrewijk GA, Kool AJ (1987) Regeneration of leaf mesophyll protoplasts of tomato cultivars (Lycopersicon esculentum): factors important for efficient protoplast culture and plant regeneration. Plant Cell Rep 6:172–175.

    Article  Google Scholar 

  • Tanimoto S, Harada H (1986) Involvement of calcium in adventitious bud initiation in Torenia stem segments. Plant Cell Physiol 27(1): 1–10.

    CAS  Google Scholar 

  • Toyoda H, Matsuda Y, Utsumi R, Ouchi S (1989) Intranuclear microinjection for transformation of tomato callus cells. Plant Cell Rep 7:293–296.

    Article  Google Scholar 

  • Trewavas AJ (1985) Growth substances, calcium and the regulation of cell division. In: Bryant and Francis (eds) The cell division cycle in plants. Cambridge University Press, Cambridge, pp 133–156.

    Google Scholar 

  • Tsukuda M, Kusano T, Kitayawa Y (1989) Introduction of foreign genes into tomato protoplasts by electroporation. Plant Cell Physiol 30(4): 599–603.

    Google Scholar 

  • Zapata FJ, Sink KC, Cocking EC (1981) Callus formation from leaf mesophyll protoplasts of three Lycopersicon species: L. esculentum, cv. Walter, L. pimpinellifolum and L. hirsutum, F. glabratum. Plant Sci Lett 23:41–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellini, C. (1993). Transformation in Lycopersicon esculentum L. (Tomato). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering III. Biotechnology in Agriculture and Forestry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78006-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78006-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78008-0

  • Online ISBN: 978-3-642-78006-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics