Skip to main content

The Genetic and Chemical Basis of Recognition in the Agrobacterium: Plant Interaction

  • Chapter
Bacterial Pathogenesis of Plants and Animals

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 192))

Abstract

Agrobacterium tumefaciens is a gram-negative soil bacterium that causes crown gall tumors on a broad spectrum of dicotyledonous plants (for reviews see: BINNS and THOMASHOW 1988; WINANS 1992; ZAMBRYSKI 1992) . This pathogenic response results from the activities of a large tumor-inducing (Ti) plasmid that resides in many but not all agrobacteria found in the rhizosphere. The infection and transformation process is a complex series of interactions between host and pathogen that ultimately leads to the transfer of DNA (the T-DNA) from the Ti plasmid into the plant cell where it is integrated into the nuclear genome. Expression of this T-DNA results in the production of two classes of protein products: (1) enzymes that synthesize plant hormones capable of stimulating continuous cell division in the transformed cells and (2) enzymes that synthesize unique amino acid:sugar acid conjugates, termed opines, that are not metabolizable by the host cell but are metabolized by the inciting bacterium, providing it with a dedicated nitrogen and carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agron PG, Ditta GS, Helinski DR (1993) Oxygen regulation of nifA transcription in vitro. Proc Natl Acad Sci USA 90: 3506–3510

    Article  PubMed  CAS  Google Scholar 

  • Ankenbauer RG, Best EA, Palanca CA, Nester EW (1991) Mutants of the Agrobacterium tumefaciens virA gene exhibiting acetosyringone-independent expression of the vir regulon. Mol Plant Microbe Interact 4: 400–406

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Takanami M, Makino K, Oka A (1991) Cross-talk between the virulence and phosphate regulons of Agrobacterium tumefaciens caused by an unusual interaction of the transcriptional activator with a regulatory DNA element. Mol Gen Genet 227: 385–390

    Article  PubMed  CAS  Google Scholar 

  • Arico B, Miller J, Roy C, Stibitz S, Monack D, Falkow S, Gross R, Rappuoli R (1989) Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 86: 6671–6675

    Article  PubMed  CAS  Google Scholar 

  • Ashby AM, Watson MD, Loake GJ, Shaw CH (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170: 4181–4187

    PubMed  CAS  Google Scholar 

  • Banta LM, Joerger RD, Howitz VR, Campbell AM, Binns AN (1994) Glu-255 outside the predicted ChvE binding site in VirA is crucial for sugar enhancement of acetosyringene perception by Agrobacterium tumefaciens. J Bacteriol 176: 3242–3249

    PubMed  CAS  Google Scholar 

  • Binns AN (1991) Transformation of wall deficient culture tobacco protoplasts by Agrobacterium tumefaciens. Plant Physiol 96: 498–506

    Article  PubMed  CAS  Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42: 575–606

    Article  CAS  Google Scholar 

  • Binns AN, Joerger RD, Banta LM, Lee K, Lynn DG (1993). Molecular and chemical analysis of signal perception by Agrobacterium. In: Nester EW, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer Academic, Dordrecht, pp 51–61

    Google Scholar 

  • Braun AC (1947) Thermal studies on tumor inception in the crown gall disease. Am J Bot 30: 674–677

    Article  Google Scholar 

  • Braun AC (1952) Conditioning of the host cells is a factor in the transformation process in crown gall. Growth 16: 65–74

    PubMed  CAS  Google Scholar 

  • Braun AC, Mandle RJ (1948) Studies on the inactivation of the tumor inducing principle in crown gall. Growth 12: 255–269

    PubMed  CAS  Google Scholar 

  • Braun AC, Stonier T (1958) Morphology and physiology of plant tumors. Protoplasmatologia 10 (5a): 1–93

    Google Scholar 

  • Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Ozga AD, Leigh JA, Nester EW (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their role in plant interactions. J Bacteriol 169: 2086–2091

    PubMed  CAS  Google Scholar 

  • Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Theines C, Nester EW (1989) Role of Agrobacterium tumefaciens ChvA protein in export of b-1,2-glucan. J Bacteriol 171: 1609–1615

    PubMed  CAS  Google Scholar 

  • Cangelosi GA, Ankenbauer RG, Nester EW (1990a) Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87: 6708–6712

    Article  PubMed  CAS  Google Scholar 

  • Cangelosi GA, Martinetti G, Nester EW (1990b) Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic ß-1,2-glucan. J Bacteriol 172: 2172–2174

    PubMed  CAS  Google Scholar 

  • Chang C-H, Winans SC (1992) Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174: 7033–7039

    PubMed  CAS  Google Scholar 

  • Charles TC, Nester EW (1993) A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 175: 6614–6625

    PubMed  CAS  Google Scholar 

  • Close TJ, Tait RC, Kado CI (1985) Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens. J Bacteriol 164: 774–781

    PubMed  CAS  Google Scholar 

  • Close TJ, Rogowsky PM, Kado CI, Winans SC, Yanofsky MF, Nester EW (1987) Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes. J Bacteriol 169: 5113–5117

    PubMed  CAS  Google Scholar 

  • Cooley MB, D’Sousa MR, Kado CI (1991) virC and virD operons of the Agrobacterium Ti plasmid are regulated by the ros chromosomal gene: analysis of the cloned ros gene. J Bacteriol 173: 2608–2616

    PubMed  CAS  Google Scholar 

  • Das A, Stachel P, Ebert P, Allenza A, Montoya A, Nester EW (1986) Promoters of Agro-bacterium tumefaciens Ti-plasmid virulence genes. Nucleic Acids Res 14: 1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Douglas CJ, Halperin W, Nester EW (1982) Agrobacterium tumefaciens mutants affected in attachment to plant cells. J Bacteriol 152: 1265–1275

    PubMed  CAS  Google Scholar 

  • Douglas CJ, Staneloni RJ, Rubin RA, Nester EW (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bacteriol 161: 850–860

    PubMed  CAS  Google Scholar 

  • Duban ME, Lee K, Lynn DG (1993) Agrobacterium tumefaciens: mechanisitic specificity in a generic signaling strategy. Mol Microbiol 7: 637–645

    Article  PubMed  CAS  Google Scholar 

  • Endoh H, Oka A (1993) Functional analysis of the VirG-like domain contained in the Agrobacterium VirA protein that senses plant factors. Plant Cell Physiol 34: 227–235

    CAS  Google Scholar 

  • Fry, SC (1983) Feruloylated pectins from the primary cell wall: their structure and possible functions. Planta 157: 111–123

    Article  CAS  Google Scholar 

  • Gurlitz RHG, Lamb PW, Matthysse AG (1987) Involvement of carrot surface proteins in attachment of Agrobacterium tumefaciens. Plant Physiol 83: 564–568

    Article  PubMed  CAS  Google Scholar 

  • Han DC, Chen C-Y, Winans SC (1992) Altered-function mutations of the transcriptional regulatory gene virG of Agrobacterium tumefaciens. J Bacteriol 174: 7040–7043

    PubMed  CAS  Google Scholar 

  • Hartman FC (1971) Haloacetol phosphates. Characterization of the active site of rabbit muscle triose phosphate isomerase. Biochemistry 10: 146–154

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Smith LY (1989) Requirement for Chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J Bacteriol 171: 5668–5671

    PubMed  CAS  Google Scholar 

  • Hess KM, Dudley MW, Lynn DG, Joerger RD, Binns AN (1991) Mechanism of phenolic activation of Agrobacterium virulence genes: development of a specific inhibitor of bacterial sensor/response systems. Proc Natl Acad Sci USA 88: 7854–7858

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rorsch A (1977) Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98: 477–484

    Google Scholar 

  • Hrabak E, Willis DK (1992) The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol 174: 3011–3020

    PubMed  CAS  Google Scholar 

  • Huang M-LAW, Cangelosi GA, Halperin W, Nester EW (1990a) A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J Bacteriol 172: 1814–1822

    PubMed  CAS  Google Scholar 

  • Huang Y, Morel P, Powell B, Kado C (1990b) VirA, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bacteriol 172: 1142–1144

    PubMed  CAS  Google Scholar 

  • Jin S, Prusti RK, Roitsch T, Ankenbauer RG, Nester EW (1990a) Phosphorylation of the virG protein of Agrobacterium tumefaciens by the autophosphorylated virA protein: essential role in biological activity of virG. J Bacteriol 172: 4945–4950

    PubMed  CAS  Google Scholar 

  • Jin S, Roitsch T, Ankenbauer RG, Gordon MP, Nester EW (1990b) The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172: 525–530

    PubMed  CAS  Google Scholar 

  • Jin S, Roitsch T, Christie PJ, Nester EW (1990c) The regulatory virG protein specifically binds to a cisacting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172: 531–537

    PubMed  CAS  Google Scholar 

  • Jin S, Song Y-n, Pan SQ, Nester EW (1993) Characterization of a virG mutation that confers virulence gene expression in Agrobacterium. Mol Microbiol 7: 555–562

    Article  PubMed  CAS  Google Scholar 

  • Kahl G (1982) Molecular biology of wound healing: the conditioning phenomenon. In: Schell J, Kahl G (ed) Molecular biology of plant tumors. Academic, New York, pp 211–267

    Google Scholar 

  • Kudirka DT, Colburn SM, Hinchee MA, Wright MS (1986) Interactions of Agrobacterium tumefaciens with soybean (Glycine ma (L.) Merr.) leaf expiants in tissue culture. Can J Bot 28: 808–817

    Google Scholar 

  • Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Dudley MW, Hess KM, Lynn DG, Joerger RD, Binns AN (1992) Mechanisms of activation of Agrobacterium virulence genes: identification of phenol-binding proteins. Proc Natl Acad Sci USA 89: 8666–8670

    Article  PubMed  CAS  Google Scholar 

  • Lee TS, Purse JG, Pryce RJ, Horgan R, Wareing PF (1981) Dihydroconiferyl alcohol - a cell division factor from Acer species. Planta 152: 571–577

    Article  CAS  Google Scholar 

  • Leroux B, Yanofsky MF, Winans SC, Ward JE, Ziegler SF, Nester EW (1987) Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J 6: 849–856

    PubMed  CAS  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: Occurrence, biogenesis and biodégradation. Annu Rev Plant Physiol Plant Mol Biol 41: 455–496

    Article  PubMed  CAS  Google Scholar 

  • Lipetz J (1966) Crown gall tumorigenesis. II. Relations between wound healing and the tumorigenic response. Cancer Res 26: 1597–1605

    PubMed  CAS  Google Scholar 

  • Loake GJ, Ashby AM, Shaw CH (1988) Attraction of Agrobacterium tumefaciens C58C1 towards sugars involves a highly sensitive chemotaxis system. J Gen Microbiol 134: 1427–1432

    CAS  Google Scholar 

  • Lois AF, Ditta GS, Helinski DR (1993a) The oxygen sensor FixL of Rhizobium meliloti is a membrane protein containing four possible transmembrane segments. J Bacteriol 175: 1103–1109

    PubMed  CAS  Google Scholar 

  • Lois AF, Weinstein M, Ditta GS, Helinski DR (1993b) Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinated regulated by oxygen. J Biol Chem 268: 4370–4375

    PubMed  CAS  Google Scholar 

  • Machida Y, Shimoda N, Yamamoto-Toyoda A, Takahashi Y, Nishihama R, Aoki S, Matsouka K, Nakamura K, Yoshioka Y, Ohba T, Obata RT (1993) Molecular interactions between Agrobacterium and plant cells. In: Nester EW, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer Academic, Dordrecht, pp 85–96

    Google Scholar 

  • Mantis NJ, Winans SC (1992) The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acidic pH and other stress stimuli. J Bacteriol 174: 1189–1196

    PubMed  CAS  Google Scholar 

  • Mantis NJ, Winans SC (1993) The chromosomal response regulatory gene chvl of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol 175: 6626–6636

    PubMed  CAS  Google Scholar 

  • Matthyssee, AG (1987) Characterization of nonattaching mutants of Agrobacterium tumefaciens. J Bacteriol 169: 313–323

    Google Scholar 

  • McCleary W, Zusman DR (1990) FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typhimurium. Proc Natl Acad Sci USA 87: 5898–5902

    Article  PubMed  CAS  Google Scholar 

  • Melchers LS, Regensburg-Tuïnk AJG, Schilperoort RA, Hooykaas PJJ (1989a) Specificity of signal molecules in the activation of Agrobacterium virulence expression. Mol Microbiol 3: 969–977

    Article  PubMed  CAS  Google Scholar 

  • Melchers LS, Regensburg-Tuïnk TJG, Bourret RB, Sedee NJA, Schilperoort RA, Hooykaas PJJ (1989b) Membrane topology and functional analysis of the sensory protein virA of Agrobacterium tumefaciens. EMBO J 8: 1919–1925

    PubMed  CAS  Google Scholar 

  • Neff NT, Binns AN (1985) Agrobacterium tumefaciens interaction with suspension-cultured tomato cells. Plant Physiol 77: 35–42

    Article  PubMed  CAS  Google Scholar 

  • Neff NT, Binns AN, Brandt C (1987) Inhibitory effects of a pectin-enriched tomato cell wall fraction on Agrobacterium tumefaciens binding and tumor formation. Plant Physiol 83: 525–528

    Article  PubMed  CAS  Google Scholar 

  • Palmer ACV, Shaw CH (1992) The role of VirA and VirG phosphorylation in chemotaxis towards acetosyringone by Agrobacterium tumefaciens. J Gen Microbiol 138: 2509–2514

    CAS  Google Scholar 

  • Parke D, Ornston NL, Nester EW (1987) Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. J Bacteriol 169: 5336–5338

    PubMed  CAS  Google Scholar 

  • Parkinson JS (1993) Signal transduction schemes of bacteria. Cell 73: 857–871

    Article  PubMed  CAS  Google Scholar 

  • Pazour GJ, Das A (1990) virG, an Agrobacterium tumefaciens transcriptional activator, initiates translation at a UUG codon and is a sequence-specific DNA-binding protein. J Bacteriol 172: 1241–1249

    PubMed  CAS  Google Scholar 

  • Pazour GJ, Ta, CN, Das A (1991) Mutants of Agrobacterium tumefaciens with elevated vir gene expression. Proc Natl Acad Sci USA 88: 6941–6945

    Article  PubMed  CAS  Google Scholar 

  • Pazour GJ, Ta, CN, Das A (1992) Constitutive mutations of Agrobacterium tumefaciens transcriptional activator of virG. J Bacteriol 174: 4169–4174

    PubMed  CAS  Google Scholar 

  • Powell BS, Rogowsky PM, Kado CI (1989) virG of Agrobacterium tumefaciens Ti plasmid pTiC58 encodes a DNA binding protein. Mol Microbiol 3: 411–4119

    Article  PubMed  CAS  Google Scholar 

  • Shaw CH, Ashby AM, Brown A, Royal C, Loake GJ, Shaw CH (1988) virA and virG are the Ti-plasmid functions required for Chemotaxis of Agrobacterium tumefaciens towards acetosyringone. Mol Microbiol 2: 413–417

    Article  PubMed  CAS  Google Scholar 

  • Shimoda T, Toyoda-Yamamoto A, Nagamine J, Usami S, Katayama M, Sakagami Y, Machida Y (1990) Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87: 6684–6688

    Article  PubMed  CAS  Google Scholar 

  • Spencer PA, Towers GHN (1988) Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27: 2781–2785

    Article  CAS  Google Scholar 

  • Stachel SE, Zambryski PC (1986) VirA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, An G, Flores C, Nester EW (1985a) A Tn3 IcZ transposon for the random generation of ß-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J 4: 891–898

    PubMed  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985b) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629

    Article  Google Scholar 

  • Stachel SE, Nester EW, Zambryski PC (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Stout V, Gottesman S (1990) RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172: 659–669

    PubMed  CAS  Google Scholar 

  • Stock JB, Stock AM, Mottonen JM (1990) Signal transduction in bacteria. Nature 344: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Tan K-S, Hoson T, Masuda Y, Kamisaka S (1992) Involvement of cell wall-bound diferulic acid in lightinduced decrease in growth rate and cell wall extensibility of Oryza coleoptiles. Plant Cell Physiol 33: 103–108

    CAS  Google Scholar 

  • Teutonico RA, Dudley MW, Orr JD, Lynn DG, Binns AN (1991) Activity and accumulation of cell divisionpromoting phenolics in tobacco tissue cultures. Plant Physiol 97: 288–297

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF, Karlinsey JE, Marks JR, Hurlbert RE (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169: 3209–3216

    PubMed  CAS  Google Scholar 

  • Turk SCHJ, P., VLR, Sonneveld E, Hooykaas PJJ (1993b) The chimeric VirA-Tar receptor protein is locked into a highly responsive state. J Bacteriol 175: 5706–5709

    CAS  Google Scholar 

  • Turk SCH, Nester EW, Hooykaas PJJ (1993a) The virA promoter is a host-range determinant in Agrobacterium tumefaciens. Mol Microbiol 7: 719–724

    Article  PubMed  CAS  Google Scholar 

  • Turk SCHJ, P., VLR, Sonneveld E, Hooykaas PJJ (1993b) The chimeric VirA-Tar receptor protein is locked into a highly responsive state. J Bacteriol 175: 5706–5709

    CAS  Google Scholar 

  • Uttaro AD, Cangelosi GA, Geremia RA, Nester EW, Ugalde RA (1990) Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. J Bacteriol 172: 1640–1646

    PubMed  CAS  Google Scholar 

  • van Veen R (1988) Strategies of bacteria in their interaction with plants; analogies and specialization. PhD dissertation, Rijksuniversiteit Leiden

    Google Scholar 

  • Veluthambi K, Krishman M, Gould JH, Smith RH, Gelvin SB (1989) Opines stimulate induction of the vir genes of Agrobacterium tumefaciens Ti plasmid. J Bacteriol 171: 3696–3703

    PubMed  CAS  Google Scholar 

  • Wagner VT, Matthysse AG (1992) Involvement of a vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells. J Bacteriol 174: 5999–6003

    PubMed  CAS  Google Scholar 

  • Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Winans SC (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172: 2433–2438

    PubMed  CAS  Google Scholar 

  • Winans SC (1992) Two-way chemical signaling in Agrobacterium -plant interactions. Microbiol Rev 56: 12–31

    PubMed  CAS  Google Scholar 

  • Winans SC, Kerstetter RA, Nester EW (1988) Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170: 4047–4054

    PubMed  CAS  Google Scholar 

  • Winans SC, Kerstetter RA, Ward JE, Nester EW (1989) A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J Bacteriol 171: 1616–1622

    PubMed  CAS  Google Scholar 

  • Yanofsky M, Lowe B, Montoya A, Rubin R, Krul W, Gordon M, Nester EW (1985) Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Mol Gen Genet 201: 237–246

    Article  CAS  Google Scholar 

  • Zambryski PC (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43: 465–490

    Article  CAS  Google Scholar 

  • Zorreguieta A, Geremia RA, Cavaignac S, Cangelosi GA, Nester EW, Ugalde RA (1988) Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol Plant Microbe Interact 1: 121–127

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Binns, A.N., Howitz, V.R. (1994). The Genetic and Chemical Basis of Recognition in the Agrobacterium: Plant Interaction. In: Dangl, J.L. (eds) Bacterial Pathogenesis of Plants and Animals. Current Topics in Microbiology and Immunology, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78624-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78624-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78626-6

  • Online ISBN: 978-3-642-78624-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics