Skip to main content

Turbulence Statistics of Rotating Channel Flow

  • Conference paper
Turbulent Shear Flows 9

Abstract

Turbulence statistics of rotating channel flow are considered, including budget data for the individual non-zero components of the Reynolds stress tensor. The statistics have been compiled from direct numerical simulations of Kristoffersen and Andersson (1993) at six different rotation numbers Ro m = 2h\Ω\/U m in the range from 0.01 to 0.50. Complete Reynolds stress budgets are provided for the particular cases Ro m = 0.15 and Ro m = 0.50, while the variation with Ro m of some important flow characteristics demonstrates the significant alterations in the flow field induced by the Coriolis force

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, H.I. and Kristoffersen, R. (1992): Statistics of numerically generated turbulence. Acta Appl Math. 26, 293–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Eskinazi, S. and Erian, F.F. (1969): Energy reversal in turbulent flows. Phys. Fluids 12, 1988–1998.

    Article  ADS  Google Scholar 

  • Gavrilakis, S., Tsai, H.M., Voke, P.R. and Leslie, D.C. (1986): Large-eddy simulation of low Reynolds number channel flow by spectral and finite difference methods. In Notes on Numerical Fluid Mechanics (U. Schumann, R. Friedrich, eds), Vieweg, Vol. 15, pp. 105–118.

    Google Scholar 

  • Hinze, J.O. (1970): Turbulent flow regions with shear stress and mean velocity gradient of opposite sign. Appl. Sci. Res. 22, 163–175.

    MATH  Google Scholar 

  • Johnston, J.P. (1973): The suppression of shear layer turbulence in rotating systems. ASME J. Fluids Eng. 95, 229–236.

    Article  Google Scholar 

  • Johnston, J.P., Halleen, R.M. and Lezius, D.K. (1972): Effects of spanwise rotation on the structure of fully developed turbulent channel flow. J. Fluid Mech. 56, 533–557.

    Article  ADS  Google Scholar 

  • Kim, J. (1983): The effect of rotation on turbulence structure. In Proc. 4th Symposium on Turbulent Shear Flows, Karlsruhe, pp. 6. 14–6. 19.

    Google Scholar 

  • Kim, J., Moin, P. and Moser, R. (1987): Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166.

    Article  ADS  MATH  Google Scholar 

  • Kitoh, O. and Nakabayashi, K. (1992): Analytical studies of two-dimensional channel turbulent flow subjected to Coriolis force (in Japanese). Trans. JSME B 58, 2138–2142.

    Article  Google Scholar 

  • Koyama, H.S. and Ohuchi, M. (1985): Effects of Coriolis force on boundary layer development. In Proc. 5th Symposium on Turbulent Shear Flows, Ithaca, pp. 21. 19–21. 24.

    Google Scholar 

  • Kristoffersen, R. and Andersson, H.I. (1993): Direct simulations of low Reynolds number turbulent flow in a rotating channel. J. Fluid Mech. 256, 163–197.

    Article  ADS  MATH  Google Scholar 

  • Launder, B.E. and Spalding, D.B. (1974): The numerical computation of turbulent flows. Comp. Meth. Appl. Mech. Engng 3, 269–289.

    Article  MATH  Google Scholar 

  • Launder, B.E. and Tselepidakis, D.P. (1994): Application of a new second-moment closure to turbulent channel flow rotating in orthogonal mode. Int. J. Heat Fluid Flow 15, 2–10.

    Article  Google Scholar 

  • Launder, B.E., Tselepidakis, D.P. and Younis, B.A. (1987): A second-moment closure study of rotating channel flow. J. Fluid Mech. 183, 63–75.

    Article  ADS  MATH  Google Scholar 

  • Mansour, N.N., Kim, J. and Moin, P. (1988): Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15–44.

    Article  ADS  Google Scholar 

  • Nakabayashi, K., Kitoh, O., Yamazoe, A. and Tsutsumi, Y. (1993): Velocity distributions of fully developed two-dimensional turbulent channel flow under effects of low-Reynolds number and Coriolis force (in Japanese). Trans. JSME B 59, 389–396.

    Article  Google Scholar 

  • Squires, K.D. and Piomelli, U. (1993): Large-eddy simulation of rotating turbulence using the dynamic model. In Proc. 9th Symposium on Turbulent Shear Flows, Kyoto, pp. 17.3.1– 17. 3. 6.

    Google Scholar 

  • Tafti, D.K. and Vanka, S.P. (1991): A numerical study of the effects of spanwise rotation on turbulent channel flow. Phys. Fluids A 3, 642–656.

    Article  ADS  Google Scholar 

  • Tritton, D.J. (1992): Stabilization and destabilization of turbulent shear flow in a rotating fluid. J. Fluid Mech. 241, 503–523.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andersson, H.I., Kristoffersen, R. (1995). Turbulence Statistics of Rotating Channel Flow. In: Durst, F., Kasagi, N., Launder, B.E., Schmidt, F.W., Suzuki, K., Whitelaw, J.H. (eds) Turbulent Shear Flows 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78823-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78823-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78825-3

  • Online ISBN: 978-3-642-78823-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics