Skip to main content

Part of the book series: Springer Series in Electronics and Photonics ((SSEP,volume 32))

Abstract

For system applications, the mm-wave frequency range overlaps, on the one hand, with standard microwave frequencies and, on the other hand, with the optical or IR range. Compared to microwave frequencies, mm-waves offer

  • — additional wide frequency bands for new applications.

  • — Smaller antenna dimensions for a given gain or higher gain for fixed antenna dimensions.

  • — Small component size combined with low weight.

  • — High data rates or spread-spectrum transmission in communication systems.

  • — High resolution of angle, range and Doppler frequencies in radar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section 9.0

  1. A. Van der Forst: MM-Wave atmospheric propagation and system implications. 16th Europ. Microw. Conf., Dublin (1986) pp. 19-30

    Google Scholar 

  2. H.J. Kumo: Are millimeter-wave systems affordable now? Microwave J. 16–24 (June 1982)

    Google Scholar 

  3. D.M. Russel: MM-wave snapshot reveals maturing technology. Defense Electronics 113–115 (October 1984)

    Google Scholar 

  4. N.B. Kramer: Must MM-waves wait again? Microwave J. 24–25 (July 1985)

    Google Scholar 

  5. A.E. Braun: Progress in millimeter-waves-where is the infrastructure? Defense Electronics 77–82 (December 1982)

    Google Scholar 

  6. H. Meinel, B. Rembold: Commercial and scientific applications of millimetric and submillimetric waves. The Radio and Electronic Engineer, No. 7/8, 351–360 (1979)

    Article  Google Scholar 

  7. K. Lindner, W. Wiesbeck: Die Mikrowellenbaugruppen eines 35 GHz Abstandswarnradars für Kraftfahrzeuge (the microwave components of a 35 GHz anticollision radar for cars). Mikrowellen Magazin 398–403 (May 1977)

    Google Scholar 

  8. G. Neininger: Vehicle Collision Avoidance Radar. Funkschau 49, 389–393 (September 1977) (in German)

    Google Scholar 

  9. T.H. Oxley, C. Burnett: MM-Wave (30–110 GHz) hybrid microstrip technology. Microw. J. Part I: 36-44 (March 1986), Part II: 177-185 (May 1986)

    Google Scholar 

  10. K. Solbach: The status of printed MM-wave E-plane circuits. IEEE Trans. MTT-31, 107–121 (1983)

    Google Scholar 

  11. W. Menzel: Integrated fin-line components for communication, radar, and radiometer applications. Infrared and Millimeter waves 13, 77–121 (Academic Press) Orlando 1985

    Google Scholar 

  12. G. Reinhold, H. Meinel: Verwendung von Millimeterwellen in Bahnsystemen (application of mm-wave in railway systems). NTZ 34, 352–357 (1981)

    Google Scholar 

  13. H. Meinel, A. Plattner, G. Reinhold: A 40 GHz railway communication system. IEEE Trans. SAC-1, 615–622 (1983)

    Google Scholar 

  14. B. Rembold, H.G. Wippich, M. Bischoff, W.F.X. Frank: A 60 GHz collision warning sensor for helicopters. Military Microw. Conf., London (1982) pp. 344-351

    Google Scholar 

  15. W. Linss et al.: MM-wave radar sensor for traffic data acquisition systems. Proc. SBMO, Int. Microw. Symp. Sao Paulo, Brazil (1989) pp. 513–521

    Google Scholar 

  16. H.-J. Fischer: Digital beacon vehicle communication at 61 GHz for interactive dynamic traffic management. 8th Int’l Conf. on Automotive Electronics, London (1991) pp. 120-124

    Google Scholar 

  17. E. Lissel: Geschwindigkeits-und Wegsensor nach dem Mikrowellen-Doppler-Prinzip (distance meter using the microwave Doppler principle). VDI-Bericht 687, 257–282 (1988)

    Google Scholar 

  18. S.A. Mohamed, M. Pilgrim: 29 GHz point-to-point radio systems for local distribution. British Telecom Technology 2, 29–40 (1984)

    Google Scholar 

  19. P. Dupuis S. Meyer, M. Goloubkoff, J.J. Guena: Millimeter wave subscriber loops. IEEE Trans. SAC-1, 623–632 (1983)

    Google Scholar 

  20. K. Ogawa, T. Ishizaki, K. Hashimoto, M. Sakarura, T. Uwano: A 50 GHz compact communication system for video link fabricated in MIC. IEEE Intern. Microw. Symp. MTT, New York (1988) pp. 1023–1026

    Google Scholar 

  21. H. Meinel, W. Menzel: Commercial millimeter-wave applications. Int’l Conf. on IR and MM-Waves, Orlando (1985) T 1.2

    Google Scholar 

  22. IEEE Microw. and Millimeter-Wave Monolithic Circuits Symp. Dig. (1992)

    Google Scholar 

  23. H. Meinel: Applications of microwaves and millimeterwaves for vehicle communications and control in Europe. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 609–612

    Google Scholar 

  24. Panel Session on IVHS in America. IEEE Int’l. Microw. Symp. MTT, Albuquerque (1992)

    Google Scholar 

  25. M. Kotaki, Y. Takimoto, E. Akutsu, Y. Fujita, H. Fukuhara, T. Takahashi.: Development of millimeter wave automotive sensing technology in Japan. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 709–712

    Google Scholar 

Section 9.1

  1. J.H. Rainwater: Radiometers Electronic eyes that’ see’ noise. Microwaves 58-62 (September 1978)

    Google Scholar 

  2. W. Hetzner: Aktive und passive Straßenzustandserkennung im Millimeterwellenbereich (detection of road surface condition using mm-waves). Frequenz 38, 179–185 (1984)

    Article  Google Scholar 

  3. G. Kadel: Radarechos mechanisch schwingender Objekte. Dissertation, TH Darmstadt, VDI Fortschrittsberichte, Reihe 21, Nr. 36

    Google Scholar 

  4. H.G. Wippich, A. Happe, B. Rembold: Ein 60 GHz Radarsensor zur Bestimmung des oberen Totpunktes bei Verbrennungskraftmaschinen (a 60 GHz radar sensor for the measurement of the upper dead center in combustion engines). VDI Report 509, 259–261 (1984)

    Google Scholar 

  5. W. Holpp: High resolution mm-wave sensors converted from military to industrial applications. Proc. Military Microw. Conf., Brighton, England (1992) pp. 13–20

    Google Scholar 

  6. J. Detlefsen, W.-D. Schuck: Präzisionslängenmessung mit Millimeterwellen (precision length measurements using mm-waves). NTZ 35, 344–347 (June 1 1982)

    Google Scholar 

  7. D.A. Williams: Millimeter wave RADARS for automotive applications. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 721–725

    Google Scholar 

  8. Workshop on Advanced Car Electronics and Future Traffic Control Systems Related to Microwaves. 21st Europ. Microw. Conf., Stuttgart (1991)

    Google Scholar 

  9. W. Holpp: Millimeterwave radar applications in the commercial arena. Proc. Workshop Commercial Applications of Micro-and Millimetre Waves. 22nd Europ. Microw. Conf., Helsinki (1992) pp. 9-17

    Google Scholar 

  10. N. Haese, M. Benlamlih, D. Cailleur, P.A. Rolland: Low-cost design of a quasi-optical front-end for on-board MM-wave pulse radar. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 621–623

    Google Scholar 

  11. D. Kroll, B. Rembold: Communication with millimeter-waves. MIOP Conf., Wiesbaden, Germany (1987) UE III-2 (in German)

    Google Scholar 

  12. M. Lange, J. Detlefsen, M Bockmaier: 94 GHz imaging radar for autonomous vehicles. 18th Europ. Microw. Conf., Stockholm, Sweden (1988) pp. 826-830

    Google Scholar 

Section 9.2

  1. M. Hata, A. Fukazawa, M. Blesho, S. Makimo, R. Higuchi.: A new 40 GHz digital distribution radio with single local oscillator. IEEE Int’l Microw. Symp. MTT, Ottawa (1978) pp. 236–238

    Google Scholar 

  2. S. Samejima, S. Kurokawa: Transportable radio equipment using 40 GHz band for video conference system. J. Telecom. Rev. 21, No. 4, 364–399 (October 1979)

    Google Scholar 

  3. H.H. Meinel: Millimeter wave system design and application trends in Europe. Alta Frequenza 28, No. 5-6, 441–456 (September–December 1989)

    Google Scholar 

  4. F. Baron, M. Liber: 60 GHz communications, technology and applications trends. Proc. Workshop Commercial Applications of Micro-and Millimetre Waves. 22nd Europ. Microw. Conf., Helsinki (1992) pp. 24–28

    Google Scholar 

  5. H.-J. Fischer: Vehicle communications at 61 GHz, Workshop Commercial Applications of Micro-and Millimetre Waves. Proc. 22nd Europ. Microw. Conf., Helsinki (1992) pp. 35-40

    Google Scholar 

  6. W. Linss: Futuristic view of the applications of advanced mm-wave integrated circuits in a traffic environment. Proc. 21st Europ. Microw. Conf., Workshop, Stuttgart, Germany (1991) pp. 106-111

    Google Scholar 

  7. WICOL 38, Product information, Telefunken Sendertechnik, Berlin (1991)

    Google Scholar 

Section 9.3

  1. U. Gütlich, A. Gruhle, J.F. Luy: A Si-SiGe HBT dielectric resonator stabilized microstrip oscillator at X-band frequencies. IEEE Microw. and Guided Wave Lett. 2, 281–283 (1992)

    Article  Google Scholar 

  2. D. Cros, P. Guillon: Whispering gallery dielectric resonator modes for W-band devices. IEEE Trans. MTT-38, 1667–1674 (1990)

    Google Scholar 

  3. B. Ress, L. Johnson, D. Apte: Prescaler aids design of fast frequency source. Microwaves & RF, 129 ff (November 1990)

    Google Scholar 

  4. R.L. Miller: Fractional frequency generators using regenerative modulation. IRE Proc. Vol. 27, 446–457 (1939)

    Article  Google Scholar 

  5. A. Plattner: A coherent, frequency agile 94 GHz radar with dual polarization capabilities. Proc. 15th Europ. Microw. Conf., Paris (1985) pp. 125-130

    Google Scholar 

  6. P. Nüchter, W. Menzel: A MM-wave frequency divider. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 695–697

    Google Scholar 

  7. G. Strauss, W. Menzel: A novel concept for mm-wave interconnects and packaging. IEEE Int’l Microw. Symp. MTT, San Diego (1994) pp. 1141-1145

    Google Scholar 

  8. B. Berson: Strategies for microwave and millimeter wave packaging today. 19th Europ. Microw. Conf., London (1989) pp. 89-95

    Google Scholar 

  9. G. Jerinic, M. Borkowski: Microwave module packaging. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 1503–1506

    Google Scholar 

  10. H.-J. Kuno, T.A. Midford: Millimeter wave packaging. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 1507–1508

    Google Scholar 

  11. A.K. Agrawal, R.D. Clarz, J.J. Komiaz, R. Browne: Microwave module interconnection and packaging using multilayer thin film/thick film technology. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 1509–1511

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menzel, W. (1994). Future Applications. In: Luy, JF., Russer, P. (eds) Silicon-Based Millimeter-Wave Devices. Springer Series in Electronics and Photonics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79031-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79031-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79033-1

  • Online ISBN: 978-3-642-79031-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics