Skip to main content

Time-Lapse Video Light Microscopic and Electron Microscopic Observations of Vertebrate Epithelial Cells Exposed to Crocidolite Asbestos

  • Conference paper
Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres

Part of the book series: NATO ASI Series ((ASIH,volume 85))

Abstract

The most popular hypothesis for how asbestos transforms cells is based on its physical dimensions, not its chemistry. This view is derived from the finding that the cytotoxic effects and transforming ability of various mineral fibers are related primarily to fiber dimensions (i.e., the length/width aspect ratio — See Hesterberg and Barrett, 1984; Stanton et al 1981; reviewed in Harington, 1981). For this reason, a knowledge of how mineral fibers behave within interphase and dividing cells, and with what intracellular components they interact, becomes important in elucidating the mechanism(s) by which they cause cell injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, and Watson JD (1989) Molecular Biology of the Cell. Garland Publ, New York, 2nd Ed pp 323–340

    Google Scholar 

  • Alexander SP and Rieder CL (1991) Chromosome motion during attachment to the vertebrate spindle: Initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J Cell Biol 113: 805–815

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Lamb PW and Wiseman RW (1989) Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect 81: 81–89

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC (1991) Role of chromosomal mutations in asbestos-induced cell transformation. In CC Harris, JF Lechner and BR Brinkley (eds) Cellular and Molecular Aspects of Fiber Carcinogenesis. Cold Spring Harbor Laboratory Press, pp 27–39

    Google Scholar 

  • Bretscher MS (1984) Endocytosis: relation to capping and cell locomotion. Science 224: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Broaddus VC, Yung R, Sanan D, Sheppard D, Boylan AM (1993) Attachment of crocidolite asbestos fibers to pleural mesothelial cells via integrin αVß5. Mol Boil Cell Vol 4, Suppl p 284a

    Google Scholar 

  • Bruch J (1974) Response of cell cultures to asbestos fibers. Environ. Health Perspect 9: 253–254

    Article  PubMed  CAS  Google Scholar 

  • Cole RW, Ault JG, Hayden JH, and Rieder CL (1991) Crocidolite asbestos fibers undergo size-dependent microtubule-mediated transport after endocytosis in vertebrate lung epithelial cells. Cancer Res 51: 4942–4947

    PubMed  CAS  Google Scholar 

  • Connell ND and Rheinwald JG (1983) Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34: 245–253

    Article  PubMed  CAS  Google Scholar 

  • Davis JMG (1967) The effects of chrysotile asbestos dust on lung macrophages maintained in organ culture: an electron-microscope study. Brit J Exp Pathol 48: 379–385

    CAS  Google Scholar 

  • Harington JS (1981) Fiber Carcinogenesis: Epidemiologic observations and the Stanton hypothesis. J Natl Cancer Inst 67: 977–989

    PubMed  CAS  Google Scholar 

  • Hesterberg TW and Barrett JC (1984) Dependence of asbestos- and mineral dustinduced transformation of mammalian cells in culture on fiber dimension. Cancer Res 44: 2170–2180

    PubMed  CAS  Google Scholar 

  • Hesterberg TW, Butterick CJ, Oshimura M, Brody AR and Barrett JC (1986) Role of phagocytosis in Syrian hamster cell transformation and cytogenetic effects induced by asbestos and short and long glass fibers. Cancer Res 46: 5795–5802

    PubMed  CAS  Google Scholar 

  • Holtzman E (1989) Lysosomes. Plenum Press New York London

    Google Scholar 

  • Jaurand MC, Bastie-Sigeac I, Bignon J. and Stoebner P (1983) Effect of chrysotile and crocidolite on the morphology and growth of rat pleural mesothelial cells. Environ Res 30: 255–269

    Article  PubMed  CAS  Google Scholar 

  • Johnson NF and Davies R (1980) The effect of crocidolite and chrysotile on peritoneal macrophages: a study by transmission and scanning electron microscopy. In RC Brown, M Chamberlain, R Davies and IP Gormley (eds) The in vitro, effects of mineral dusts. Academic Press New York pp 97–103

    Google Scholar 

  • Kenne K, Ljungquist S and Ringertz NR (1986) Effects of asbestos fibers on cell division, cell survival, and formation of thioguanine-resistant mutants in Chinese hamster ovary cells. Environ Res 39: 448–464

    Article  PubMed  CAS  Google Scholar 

  • Kodama Y, Boreiko CJ, Maness SC and Hesterberg TW (1993) Cytotoxic and cytogenetic effects of asbestos on human bronchial epithelial cells in culture. Carcinogenesis 14: 691–697

    Article  PubMed  CAS  Google Scholar 

  • Lechner JF, Tokiwa T, LaVeck M, Benedict WF, Banks-Schlegel S, Yeager Jr H, Banerjee A, and Harris CC (1985) Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci USA 82: 3844–3888.

    Article  Google Scholar 

  • Lechner JF, Gerwin BI, Reddel RR, Gabrielson EW, Van der Meeren A, Linnainmaa K, Somers ANA and Harris CC (1991) Studies on human mesothelial cells: effects of growth factors and asbesti-form fibers. In CC Harris, JF Lechner, and BR Brinkley (eds) Cellular and Molecular Aspects of Fiber Carcinogenesis. Cold Spring Harbor Laboratory Press pp 115–129

    Google Scholar 

  • Mandeville EC and Rieder CL (1990) Keratin filaments restrict organelle migration into the forming spindle of newt pneumocytes. Cell Motil Cytoskel 15: 111–120

    Article  CAS  Google Scholar 

  • Miller K (1978) The effects of asbestos on macrophages. CRC Critical Rev Toxicol 5: 319–354

    Article  CAS  Google Scholar 

  • Oshimura M, Hesterberg TW, Tsutsui T and Barrett JC (1984) Correlation of asbestos-induced cytogenetic effects with cell transformation of Syrian hamster embryo cells in culture. Cancer Res 44: 5017–5022.

    PubMed  CAS  Google Scholar 

  • Ostergren G (1945) Transverse equilibria on the spindle. Bot Not 4: 467–468

    Google Scholar 

  • Rieder CL and Bowser SS (1987) Correlative light and electron microscopy on the same epoxy section. In MA Hyatt (ed) Correlative Microscopy in Biology: Instrumentation and Methods. Academic Press New York pp 249–277

    Google Scholar 

  • Rieder CL and Hard R (1990) Newt lung epithelial cells: cultivation, use and advantages for biomedical research. Int Rev Cytol 122: 153–220

    Article  PubMed  CAS  Google Scholar 

  • Rieder CL, Sluder G and Brinkley, BR (1991) Some possible routes for asbestosinduced aneuploidy during mitosis in vertebrate cells. In CC Harris, JF Lechner and BR Brinkley (eds) Cellular and Molecular Aspects of Fiber Carcinogenesis. Cold Spring Harbor Laboratory Press pp 1–26

    Google Scholar 

  • Schroer TA and Sheetz MP (1991) Functions of microtube-based motors. Ann Rev Physiol 53:629–652

    Google Scholar 

  • Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E and Smith A (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst 67: 965–975

    PubMed  CAS  Google Scholar 

  • Steinman RM, Mellman IS, Muller WA and Cohn ZA (1983) Endocytosis and the cycling of plasma membrane. J Cell Biol 96: 1–27

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Churg J and Ono T (1972) Phagocytic activity of the alveolar epithelial cells in pulmonary asbestosis. Am J Pathol 69: 373–388

    PubMed  CAS  Google Scholar 

  • Vallee RB and Shpetner HS (1990) Motor proteins of cytoplasmic microtubules. Ann Rev Biochem 59: 909–932

    Article  PubMed  CAS  Google Scholar 

  • Yegles M, Saint-Etienne L, Renier A, Janson X and Jaurand MC (1993) Induction of metaphase and anaphase/telophase abnormalities by asbestos fibers in rat pleural mesothelial cells in vitro,. Am J Respir Cell Mol Biol 9: 186–191

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jensen, C.G., Jensen, L.C.W., Ault, J.G., Osorio, G., Cole, R., Rieder, C.L. (1994). Time-Lapse Video Light Microscopic and Electron Microscopic Observations of Vertebrate Epithelial Cells Exposed to Crocidolite Asbestos. In: Davis, J.M.G., Jaurand, MC. (eds) Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres. NATO ASI Series, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79041-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79041-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79043-0

  • Online ISBN: 978-3-642-79041-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics