Skip to main content

The AE gene family of band 3-related anion exchangers

  • Conference paper
Molecular and Cellular Mechanisms of H+ Transport

Part of the book series: NATO ASI Series ((volume 89))

  • 88 Accesses

Abstract

Chloride/bicarbonate exchange is nearly ubiquitous among vertebrate cells (Alper, 1991). In erythrocytes, it serves to increase the CO2carrying capacity of the blood so as to increase delivery to the lungs for expiration of the CO2produced by cellular respiration (Tanner, 1993). In other cells, chloride/bicarbonate exchange participates in the maintenance of intracellular pH, volume, and chloride concentration. Chloride/bicarbonate exchange acid- loads cells in response to intracellular alkalinization, or participates with sodium/proton exchange in regulatory volume increase. Polarized epithelial cells restrict some of their chloride/bicarbonate exchange functions to apical or basolateral membranes in order to mediate vectorial transepithelial transport of bicarbonate and/or chloride. The only chloride/bicarbonate exchangers of known identity are the AE gene products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper SL (1991) The band 3-related anion exchanger (AE) gene family. Annu Rev Physiol 53: 549–64

    Article  CAS  PubMed  Google Scholar 

  • Alper SL, Kopito RR, Libresco SM, Lodish HF (1988) Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line. J Biol Chem 263: 17092–9

    CAS  PubMed  Google Scholar 

  • Bartel D, Lepke S, Layh SG, Legrum B, Passow H (1989) Anion transport in oocytes of Xenopus laevis induced by expression of mouse erythroid band 3 protein—encoding cRNA and of a cRNA derivative obtained by site-directed mutagenesis at the stilbene disulfonate binding site. Embo J 8: 3601–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brosius FC, Alper SL, Garcia AM, Lodish HF (1989) The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem 264: 7784–7

    CAS  PubMed  Google Scholar 

  • Chow A, Dobbins JW, Aronson PS, Igarashi P (1992) cDNA cloning and localization of a band 3-related protein from ileum. Am J Physiol G345–52

    Google Scholar 

  • Fuerstenberg S, Beug H, Introna M, Khazaie K, Munoz A, Ness S, et al. (1990) Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector. J Virol 64: 5891–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia AM, Lodish HF (1989) Lysine 539 of human band 3 is not essential for ion transport or inhibition by stilbene disulfonates. J Biol Chem 264: 19607–13

    CAS  PubMed  Google Scholar 

  • Gehrig H, Muller W, Appelhans H (1992) Complete nucleotide sequence of band 3 related anion transport protein AE2 from human kidney. Biochim Biophys Acta 1130: 326–8

    Article  CAS  PubMed  Google Scholar 

  • Groves JD, Tanner MJ (1992) Glycophorin A facilitates the expression of human band 3- mediated anion transport in Xenopus oocytes. J Biol Chem 267: 22163–70

    CAS  PubMed  Google Scholar 

  • He X, Wu X, Knauf PA, Tabak LA, Melvin JE (1993) Functional expression of the rat anion exchanger AE2 in insect cells by a recombinant baculovirus. Am J Physiol C1075–9

    Google Scholar 

  • Hubner S, Michel F, Rudloff V, Appelhans H (1992) Amino acid sequence of band-3 protein from rainbow trout erythrocytes derived from cDNA Biochem J17–23

    Google Scholar 

  • Jarolim P, Palek J, Amato D, Hassan K, Sapak P, Nurse GT, et al. (1991) Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci USA 88: 11022–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarolim P, Palek J, Rubin HL, Prchal JT, Korsgren C, Cohen CM (1992) Band 3 Tuscaloosa: Pro327–Arg327 substitution in the cytoplasmic domain of erythrocyte band 3 protein associated with spherocytic hemolytic anemia and partial deficiency of protein 4.2. Blood 80: 523–9

    CAS  PubMed  Google Scholar 

  • Kim HR, Kennedy BS, Engel JD (1989) Two chicken erythrocyte band 3 mRNAs are generated by alternative transcriptional initiation and differential RNA splicing. Mol Cell Biol 9: 5198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HR, Yew NS, Ansorge W, Voss H, Schwager C, Vennstrom B, et al. (1988) Two different mRNAs are transcribed from a single genomic locus encoding the chicken erythrocyte anion transport proteins (band 3). Mol Cell Biol 8: 4416–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopito RR, Andersson M, Lodish HF (1987) Structure and organization of the murine band 3 gene. J Biol Chem 262: 8035–40

    CAS  PubMed  Google Scholar 

  • Kopito RR, Lee BS, Simmons DM, Lindsey AE, Morgans CW, Schneider K (1989) Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 59: 927–37

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316: 234–8

    Article  CAS  PubMed  Google Scholar 

  • Kudrycki KE, Newman PR, Shull GE (1990) cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band 3 C1-/HC03- exchanger. J Biol Chem 265: 462–71

    Google Scholar 

  • Kudrycki KE, Shull GE (1989) Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA. J Biol Chem 264: 8185–92

    CAS  PubMed  Google Scholar 

  • Kudrycki KE, Shull GE (1993) Rat kidney band 3 Cl-/HCQ3- exchanger mRNA is transcribed from an alternative promoter. Am J Physiol F540–7

    Google Scholar 

  • Lazarides E, Woods C (1989) Biogenesis of the red blood cell membrane-skeleton and the control of erythroid morphogenesis. Annu Rev Cell Biol 5: 427–52

    Article  CAS  PubMed  Google Scholar 

  • Lee BS, Gunn RB, Kopito RR (1991) Functional differences among nonerythroid anion exchangers expressed in a transfected human cell line. J Biol Chem 266: 11448–54

    CAS  PubMed  Google Scholar 

  • Lehnert ME, Lodish HF (1988) Unequal synthesis and differential degradation of alpha and beta spectrin during murine erythroid differentiation. J Cell Biol 107: 413–26

    Article  CAS  PubMed  Google Scholar 

  • Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR (1990) Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci USA 87: 5278–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linn SC, Kudrycki KE, Shull GE (1992) The predicted translation product of a cardiac AE3 mRNA contains an N terminus distinct from that of the brain AE3 C1-/HC03-exchanger. Cloning of a cardiac AE3 cDNA, organization of the AE3 gene, and identification of an alternative transcription initiation site. J Biol Chem 267: 7927–35

    CAS  PubMed  Google Scholar 

  • Liu SC, Zhai S, Palek J, Golan DE, Amato D, Hassan K, et al. (1990) Molecular defect of the band 3 protein in southeast Asian ovalocytosis. N Engl J Med 323: 1530–8

    Article  CAS  PubMed  Google Scholar 

  • Love JM, Knight AM, McAleer MA, Todd JA (1990) Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucleic Acids Res 18: 4123–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lux SE, John KM, Kopito RR, Lodish HF (1989) Cloning and characterization of band 3, the human erythrocyte anion- exchange protein (AE1). Proc Natl Acad Sci USA 86: 9089–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgans CW, Kopito RR (1993) Association of the brain anion exchanger, AE3, with the repeat domain of ankyrin. J. Cell. Sci. 105:1137–1142

    CAS  PubMed  Google Scholar 

  • Moriyama R, Ideguchi H, Lombardo CR, Van DH, Low PS (1992) Structural and functional characterization of band 3 from Southeast Asian ovalocytes. J Biol Chem 267: 25792–7

    CAS  PubMed  Google Scholar 

  • Nehls V, Zeitler ZP, Drenckhahn D (1993) Different sequences of expression of band 3, spectrin, and ankyrin during normal erythropoiesis and erythroleukemia. Am J Pathol 142: 1565–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palumbo AP, Isobe M, Huebner K, Shane S, Rovera G, Demuth D, et al. (1986) Chromosomal localization of a human band 3-like gene to region 7q35-7q36. Am J Hum Genet 39: 307–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passow H, Lepke S, Wood PG (1992) Exploration of the mechanism of mouse erythroid band

    Google Scholar 

  • 3-mediated anion exchange by site-directed mutagenesis. Prog. Cell. Res. 2: 85–101

    Google Scholar 

  • Raley-Susman KM, Sapolsky RM, Kopito RR (1993) C1-/HC03- exchange function differs in adult and fetal rat hippocampal neurons. Brain Res. 614: 308–314

    Article  CAS  PubMed  Google Scholar 

  • Reithmeier RAF, Casey JR (1992) Oligomeric structure of the human erythrocyte band 3 anion transport protein. Prog. Cell. Res. 2:181–190

    Article  CAS  Google Scholar 

  • Ruetz S, Lindsey AE, Ward CL, Kopito RR (1993) Functional activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment. J Cell Biol 121: 37–48

    Article  CAS  PubMed  Google Scholar 

  • Rybicki AC, Qiu JJ, Musto S, Rosen NL, Nagel RL, Schwartz RS (1993) Human erythrocyte protein 4.2 deficiency associated with hemolytic anemia and a homozygous 40glutamic acid—gt;lysine substitution in the cytoplasmic domain of band 3 (band 3Montefiore). Blood 81: 2155–65

    CAS  PubMed  Google Scholar 

  • Schofield AE, Reardon DM, Tanner MJ (1992) Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature 355: 836–8

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Huber E, Lindenthal S, Mulzer K, Schuck P (1992) The relationships between the oligomeric structure and the functions of human erythrocyte band 3 protein: the functional unit for the binding of ankyrin, hemoglobin and aldolase and for anion transport. Prog. Cell. Res. 2: 209–217

    Google Scholar 

  • Showe LC, Ballantine M, Huebner K (1987) Localization of the gene for the erythroid anion exchange protein, band 3 (EMPB3), to human chromosome 17. Genomics 1: 71–6

    Article  CAS  PubMed  Google Scholar 

  • Tanner MJ (1993) Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol 30: 34–57

    CAS  PubMed  Google Scholar 

  • van Adelsberg JS, Edwards JC, al Awqati Q (1993) The apical Cl/HC03 exchanger of beta intercalated cells. J Biol Chem 268: 11283–9

    PubMed  Google Scholar 

  • Wagner S, Vogel R, Lietzke R, Koob R, Drenckhahn D (1987) Immunochemical characterization of a band 3-like anion exchanger in collecting duct of human kidney. Am J Physiol F213–21

    Google Scholar 

  • Wood PG, Muller H, Sovak M, Passow H (1992) Role of Lys 558 and Lys 869 in substrate and inhibitor binding to the murine band 3 protein: a study of the effects of site- directed mutagenesis of the band 3 protein expressed in the oocytes of Xenopus laevis. J Membr Biol 127: 139–48

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alper, S.L. (1994). The AE gene family of band 3-related anion exchangers. In: Hirst, B.H. (eds) Molecular and Cellular Mechanisms of H+ Transport. NATO ASI Series, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79301-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79301-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79303-5

  • Online ISBN: 978-3-642-79301-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics