Skip to main content

Total Artificial Heart with High-efficiency Motor-Gear Unit

  • Chapter
Assisted Circulation 4

Abstract

Since the first clinical application of a total artificial heart (TAH) by Cooley and Liotta in Houston in 1969 and the subsequent long-term implantations by DeVries in Salt Lake City and Louisville, as well as by Semb in Stockholm in the 1980s about 250 TAHs have been used clinically, mainly in the bridge-to-transplant setting [1]. These pneumatically activated TAHs had a number of potential risk factors such as infection, thromboembolic complications, and bleeding, as well as material degradation. Many of these problems are as yet unsolved. Nevertheless, necessary future development can be clearly outlined: Fully implantable systems including the energy converter have to be developed, fluid mechanics of pump chambers and valves have to be improved, long-term biostability of materials has to be ensured, and adaptive control systems have to be developed. An important step in this direction is currently being undertaken with long-term clinical implants of ventricular assist devices such as those developed by Baxter and Thermo Cardiosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pantalos GM (1993) Artificial heart: past, present and future. Artif Organs 10:826–827

    Google Scholar 

  2. Sherman C, Daly B, Dasse K et al. (1983) Research and development of systems for transmitting energy through intact skin. Final technical report (N01-HV-0–2903–3) for devices and technology branch, DHVD, NHLBI. National Institutes of Health, Washington DC

    Google Scholar 

  3. Schuder JC, Gold JH, Stephenson HE (1971) An inductively coupled RF system for the transmission of 1 kW of power through the skin. IEEE Trans Biomed Eng 18:265–273

    Article  PubMed  CAS  Google Scholar 

  4. Powers RA, Wolga AE, Ochs BD, Yu LS, Kung RTV (1993) Life testing of implantable batteries for a total artificial heart. ASAIO J 39:M663-M667

    Article  PubMed  CAS  Google Scholar 

  5. MacLean GK, Aiken PA, Adams WA, Mussivand T (1993) Evaluation of nickel-cadmium battery packs for mechanical circulatory support devices. ASAIO J 39:M423-M426

    Article  PubMed  CAS  Google Scholar 

  6. Ahn JM, Kang DW, Kim HC, Min BG (1993) In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart. ASAIO J 39:M208-M212

    Article  PubMed  CAS  Google Scholar 

  7. Fujimoto LK, Jacobs GB, Przypyz J et al. (1984) Human thoracic anatomy based on computed tomography for development of a totally implantable left ventricular assist system. Artif Organs 4:436–444

    Article  Google Scholar 

  8. Fujimoto LK, Smith WA, Jacobs GB et al. (1985) Anatomical considerations in the design of a long-term implantable human left ventricle assist system. Artif Organs 4:361–374

    Article  Google Scholar 

  9. Carter BL, Morehead J, Wolpert SM, Hammerschlag SB, Griffiths HJ (1977) Cross-sectional anatomy, computed tomography and ultrasound correlation. Appleton Century Croft, New York

    Google Scholar 

  10. Kaufmann R, Reul H, Rau G (1992) Electromechanical artificial heart with a new gear type and angled pump chambers. Int J Artif Organs 8:481–487

    Google Scholar 

  11. Knierbein B (1990) Konstruktion, Fertigung und Test von pneumatisch angetriebenen Membranpumpen zur Herzunterstützung. Thesis, University of Aachen, p 170

    Google Scholar 

  12. Eilers R, Harbott P, Reul H, Rakhorst G, Rau G (1994) Design improvements of the HIA-VAD based on animal experiments. Artif Organs 7:473–478

    Article  Google Scholar 

  13. Rakhorst G, Hensens AG et al. (1992) Evaluation of a protocol for animal experiments with Helmholtz left ventricular assist devices. Cor Eur 4:155–159

    Google Scholar 

  14. Kaufmann R, Reul H, Rau G, Bitdinger R (1993) Pulsierend arbeitende Blutpumpe der Forschungsgesellschaft für Biomedizinsche Technik (German patent no DE 41 29 970)

    Google Scholar 

  15. Schadebrodt G, Salomon B (1990) The piezo travelling wave motor - a new drive element in actuation. AEG Press Release (pri 9973e/1990)

    Google Scholar 

  16. Tomikawa Y, Ogasawara T (1989) Ultrasonic motors - constructions/characteristics/applications. Ferroelectrics 91:163–178

    Article  Google Scholar 

  17. Jufer M (1992) Smart motor technology - advantages and performance comparison. Report 92/ 205 of Laboratory of Electromechanics and Electrical Machines. Swiss Federal Institute of Technology

    Google Scholar 

  18. Perriard Y (1992) Methodologie de conception d’activateurs pour ventricule d’assistance cardiaque implantable. Thesis no 1085, Ecole Polytechnique Federale de Lausanne

    Google Scholar 

  19. Ruchti TL, Brown RH, Jeutter DC, Feng X (1993) Identification for systemic arterial parameters with application to total artificial heart control. Ann Biomed Eng 21:221–236

    Article  PubMed  CAS  Google Scholar 

  20. Rosenberg G, Landis DL, Donachy JH, Brighton JA, Stallsmith J, Pierce WS (1979) Design of the Pennsylvania State University artificial heart and electronic automatic control system. In: Unger F (ed) Assisted circulation. Springer, Berlin Heidelberg New York, pp 344–352

    Chapter  Google Scholar 

  21. Takatani S, Harasaki H, Suwa S, Murabayashi S, Sukalac R, Jacobs G, Kiraly G, Nosé Y (1981) Pusher-plate type TAH system operated in the left and right free-running variable rate mode. Artif Organs 2:132–142

    Article  Google Scholar 

  22. Kung RTV, Ochs B (1991) Self-regulation of an electrohydraulic total artificial heart In: Akutsu T, Koyanagi H (eds) Artificial heart, vol 3. Springer, Berlin Heidelberg New York, pp 173–181

    Google Scholar 

  23. Knierbein B, Reul H, Eilers R, Lange R, Kaufmann R, Rau G (1992) Compact mock loops of the systemic and pulmonary circulation for blood pump testing. Int J Artif Organs 1:40–48

    Google Scholar 

  24. Kaufmann R, Reul H, Rau G (1994) The Helmholtz total artificial heart labtype. Artif Organs 7:537–542

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaufmann, R., Reul, H., Rau, G. (1995). Total Artificial Heart with High-efficiency Motor-Gear Unit. In: Unger, F. (eds) Assisted Circulation 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79340-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79340-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79342-4

  • Online ISBN: 978-3-642-79340-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics