Skip to main content

Perspective on the Use of Structure-Activity Expert Systems in Toxicology

  • Conference paper
Modulation of Cellular Responses in Toxicity

Part of the book series: NATO ASI Series ((ASIH,volume 93))

Summary

MULTICASE and META, two computer-based expert systems, are described and applications illustrated.

MULTICASE, in conjunction with specific data bases, can be used to predict the biological activity (e.g. toxicity) of yet untested molecules as well as to gain mechanistic insight. Heretofore, in excess of 70 toxicity data bases have been successfully analyzed by MULTICASE.

META is an expert system that has assimilated 665 enzymic and 286 spontaneous reactions. It can be used to identify biotransformation pathways and putative metabolites.

When operated in tandem, META and MULTICASE allow the prediction of the toxicity of parent molecules as well as of their metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, M.E., J. Higginson, D. Krewski, I.C. Munro, A.E. Pegg, H.S. Rosenkranz, K.R. Solomon, E. Weisburger, G.M. Williams and G.N. Wogan (1990) Safety assessment procedures for indirect food additives. An Overview. Regulatory Toxicology and Pharmacology, 12: 2–12.

    Article  Google Scholar 

  • Ashby, J. and R.S. Morrod (1991) Detection of human carcinogens. Nature, 352: 185–186.

    Article  PubMed  CAS  Google Scholar 

  • Ashby, J. and R.W. Tennant (1991) Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. National Toxicology Program. Mutation Research, 257: 229–306.

    PubMed  CAS  Google Scholar 

  • Brown, L.P. and J. Ashby (1990) Correlations between bioassay dose-level, mutagenicity to Salmonella, chemical structure and sites of carcinogenesis among 226 chemicals evaluated for carcinogenicity by the U.S. NTP. Mutation Research, 244: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Clayson, D.B. and D.L. Arnold (1991) The classification of carcinogens identified in the rodent bioassay as potential risks to humans: What type of substance should be tested next? Mutation Research, 257: 91–106.

    PubMed  CAS  Google Scholar 

  • Gold, L.S., C.B. Sawyer, R. Magaw, G.M. Backman, M. deVeciana, R. Levinson, N.K. Hooper, W.R. Havender, L. Bernstein, R. Peto, M.C. Pike and B.N. Ames (1984) A Carcinogenic Potency Data Base of the standardized results of animal bioassays. Environmental Health Perspectives, 58: 9–319.

    Article  PubMed  CAS  Google Scholar 

  • Gold, L.S., M. deVeciana, G.M. Backman, R. Magaw, P. Lopipero, M. Smith, M. Blumenthal, R. Levinson, L. Bernstein and B.N. Ames (1986) Chronological supplement to the Carcinogenic Potency Data Base: Standardized results of animal bioassays published through December 1982. Environmental Health Perspectives, 67: 161–200.

    Article  PubMed  CAS  Google Scholar 

  • Houser, J.J. and G. Klopman (1988) A new tool for the rapid estimation of charge distribution. Journal of Computational Chemistry, 9: 893–904.

    Article  CAS  Google Scholar 

  • Klopman, G. (1984) Artificial intelligence approach to structure-activity studies. Computer Automated Structure Evaluation of biological activity of organic molecules. Journal of the American Chemical Society, 106: 7315–7321.

    Article  CAS  Google Scholar 

  • Klopman, G. and H.S. Rosenkranz (1984) Structural requirements for the mutagenicity of environmental nitroarenes. Mutation Research, 126: 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Klopman, G., R. Contreras, H.S. Rosenkranz and M.D. Waters (1985a) Structure-genotoxic activity relationships of pesticides: Comparison between the results of several short-term assays. Mutation Research, 147: 343–356.

    CAS  Google Scholar 

  • Klopman, G., M.R. Frierson and H.S. Rosenkranz (1985b) Computer analysis of toxicological data bases: Mutagenicity of aromatic amines in Salmonella testers strains. Environmental Mutagenesis, 7: 625–644.

    Article  PubMed  CAS  Google Scholar 

  • Klopman, G., M.R. Frierson and H.S. Rosenkranz (1990) The structural basis of the mutagenicity of chemicals in Salmonella typhimurium: The Gene-Tox Data Base. Mutation Research, 228: 1–50.

    PubMed  CAS  Google Scholar 

  • Klopman, G. and S. Wang (1991) A Computer Automated Structure Evaluation ( CASE) approach to calculation of partition coefficient. Journal of Computational Chemistry, 12: 1025–1032.

    Article  CAS  Google Scholar 

  • Klopman, G. (1992) MULTICASE 1. A hierarchical Computer Automated Structure Evaluation program. Quantitative Structure-Activity Relationships, 11: 176–184.

    Article  CAS  Google Scholar 

  • Klopman, G. and H.S. Rosenkranz (1992) Testing by artificial intelligence: Computational alternative to the determination of mutagenicity. Mutation Research, 272: 59–71.

    PubMed  CAS  Google Scholar 

  • Klopman, G., S. Wang and D.M. Balthasar (1992) Estimation of aqueous solubility of organic molecules by the group contribution approach. Application to the study of biodégradation. Journal of Chemical Information and Computer Sciences, 32: 474–482.

    Article  Google Scholar 

  • Klopman, G. and H.S. Rosenkranz (1994a) Prediction of carcinogenicity/mutagenicity using MULTICASE. Mutation Research, 305: 33–46.

    Article  PubMed  CAS  Google Scholar 

  • Klopman, G. and H.S. Rosenkranz (1994b) Toxicity estimation by chemical substructure analysis: The Tox II program. In: Decision Support Methodologies for Human Risk Assessment of Toxic Substances, in press.

    Google Scholar 

  • Lave, L.B., F.K. Ennever, H.S. Rosenkranz and G.S. Omenn (1988) Information value of the rodent bioassay. Nature, 336: 631–633.

    Article  PubMed  CAS  Google Scholar 

  • National Academy of Sciences (1984) Toxicity Testing: Strategies to Determine Needs and Priorities. National Academy Press, Washington, D.C.

    Google Scholar 

  • Netherlands (1980) Health Council of the Netherlands, Report of the Evaluation of the Carcinogenicity of Chemical Substances. Government Printing Office, the Hague.

    Google Scholar 

  • Piegorsch, W.W. and E. Zeiger (1991) Measuring intra-assay agreement for the Ames Salmonella assay. In: Lecture Notes in Medical Information, Statistical Methods in Toxicology ( O. Rienhoff and D.A.B. Lindberg, eds.) Springer, Berlin, pp. 35–41.

    Google Scholar 

  • Rosenkranz, H.S., G. Klopman, V. Chankong, J. Pet-Edwards and Y.Y. Haimes (1984) Prediction of environmental carcinogens: A strategy for the mid 1980’s. Environmental Mutagenesis, 6: 231–258.

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz, H.S., C.S. Mitchell and G. Klopman (1985) Artificial intelligence and Bayesian decision theory in the prediction of chemical carcinogens. Mutation Research, 150: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz, H.S. and G. Klopman (1988) CASE, the Computer Automated Structure Evaluation system, as an alternative to extensive animal testing. Toxicology and Industrial Health, 4: 533–540.

    PubMed  CAS  Google Scholar 

  • Rosenkranz, H.S., N. Takihi and G. Klopman (1991) Structure activity-based predictive toxicology: An efficient and economical method for generating non-congeneric data bases. Mutagenesis, 6: 391–394.

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz, H.S. and G. Klopman (1993a) Structural evidence for a dichotomy in rodent carcinogenesis: Involvement of genetic and cellular toxicity. Mutation Research, 303: 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz, H.S. and G. Klopman (1993b) Structural relationships between mutagenicity, maximum tolerated dose, and carcinogenicity in rodents. Environmental and Molecular Mutagenesis, 21: 193–206.

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz, H.S., J. Pangrekar and G. Klopman (1993) Similarities in the mechanisms of antibacterial activity (Microtox® Assay) and toxicity to vertebrates. ATLA, 21: 489–500.

    Google Scholar 

  • Rosenkranz, H.S., Y.P. Zhang and G. Klopman (1994b) Evidence that cell toxicity may contribute to the genotoxic response. Regulatory Toxicology and Pharmacology, in press.

    Google Scholar 

  • Takihi, N., Y.P. Zhang, G. Klopman and H.S. Rosenkranz (1993a) An approach for evaluating and increasing the informational content of mutagenicity and clastogenicity data bases. Mutagenesis, 8: 257–264.

    Article  CAS  Google Scholar 

  • Takihi, N., Y.P. Zhang, G. Klopman and H.S. Rosenkranz (1993b) Development of a method to assess the informational content of structure-activity data bases. Quality Assurance: Good Practice, Regulation, and Law, 2: 255–264.

    CAS  Google Scholar 

  • Takihi, N., H.S. Rosenkranz and G. Klopman (1993c) Identification of chemicals for testing in the rodent cancer bioassay. Quality Assurance: Good Practice, Regulation, and Law, 2: 232–243.

    CAS  Google Scholar 

  • Takihi, N., H.S. Rosenkranz, G. Klopman and D.R. Mattison (1994) Structural determinants of developmental toxicity, jn press.

    Google Scholar 

  • Williams, G.M. (1987) Definition of a human cancer hazard. In: Non-genotoxic Mechanisms in Carcinogenesis, Banbury Report 25 (B.E. Butterworth and T.J. Slaga, eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 367–380.

    Google Scholar 

  • Williams, G.M. (1990) Screening procedures for evaluating the potential carcinogenicity of food-packaging chemicals. Regulatory Toxicology and Pharmacology, 12: 30–40.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J.D. (1989) Assessment of low-exposure risk from carcinogenesis: Implications of the Knudson-Moolgavkar Two-Critical Mutation Theory. In: Biologically-Based Methods for Cancer Risk Assessment ( C.C. Travis, ed.) Plenum Press, pp. 275–287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenkranz, H.S., Klopman, G. (1995). Perspective on the Use of Structure-Activity Expert Systems in Toxicology. In: Galli, C.L., Marinovich, M., Goldberg, A.M. (eds) Modulation of Cellular Responses in Toxicity. NATO ASI Series, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79872-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79872-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79874-0

  • Online ISBN: 978-3-642-79872-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics