Skip to main content

Quantitative Computed Tomography at the Axial Skeleton

  • Chapter
Bone Densitometry and Osteoporosis

Abstract

Quantitative computed tomography (QCT) is an established technique for measuring bone mineral density (BMD) in the axial spine and appendicular skeleton [1–3]. Because it provides cross-sectional images, QCT is uniquely able to provide separate measurements of trabecular and cortical bone BMD as well as a true volumetric mineral density in grams per cubic centimeter. In this application QCT has been used for assessment of vertebral fracture risk [4, 5], measurement of age-related bone loss [6–8], and follow-up of osteoporosis and other metabolic bone diseases [9]. This chapter assesses the current capabilities of QCT at different skeletal sites, and reviews recent technical developments such as fast three-dimensional data acquisition and high-resolution image acquisition and processing techniques, in which novel information about bone strength may be obtained through analysis of trabecular microarchitecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97: 699–705

    PubMed  CAS  Google Scholar 

  2. Guglielmi G, Glüer CC, Majumdar S, Blunt BA, Genant HK (1995) Current methods and advances in bone densitometry. Eur Radiol 5: 129–139

    Article  PubMed  CAS  Google Scholar 

  3. Rüegsegger P, Elsasser U, Anliker M, Gnehm H, Kind H, Prader A (1976) Quantification of bone mineralization using computed tomography. Radiology 121: 93–97

    PubMed  Google Scholar 

  4. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4: 493–500

    Article  PubMed  CAS  Google Scholar 

  5. Pacifici R, Rupich R, Griffin M, Chines A, Susman N, Avioli LV (1990) Dual energy radiography versus quantitative computed tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 70: 705–710

    Article  PubMed  CAS  Google Scholar 

  6. Guglielmi G, Grimston SK, Fisher KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual X-ray absorptiometry compared with quantitative CT. Radiology 192: 845–850

    PubMed  CAS  Google Scholar 

  7. Block JE, Smith R, Glüer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tornograhy. J Bone Miner Res 4: 249–257

    Article  PubMed  CAS  Google Scholar 

  8. Kalender WA, Klotz E, Süss C (1987) Vertebral bone mineral analysis: an integrated approach. Radiology 164: 419–423

    PubMed  CAS  Google Scholar 

  9. Genant HK, Steiger P, Block JE, Glüer CC (1987) Quantitative computed tomography: update 1987. Calcif Tissue Int 41: 179–186

    Article  PubMed  CAS  Google Scholar 

  10. Genant HK, Block JE, Steiger P, Glüer CC (1987) Quantitative computed tomography in the assessment of osteoporosis. In: Genant HK (ed) Osteoporosis update 1987. University of California Press, Berkeley, pp 49–71

    Google Scholar 

  11. Firooznia H, Golimbu C, Rafii M, Schwartz MS, Alterman ER (1984) Quantitative computed tomography assessment of spinal trabecular bone: II. In osteoporotic women with and without vertebral fractures. J Comput Tomo-gr 8: 99–103

    Article  CAS  Google Scholar 

  12. Genant HK, Glüer CC, Steiger P, Faulkner KG (1992) Quantitative computed tomography for the assessment of osteoporosis. In: Moss AA, Gamsu G, Genant HK (eds) Computed tomography of the body. Saunders, Philadelphia, pp 523–549

    Google Scholar 

  13. Kalender WA, Brestowsky H, Felsenberg D (1988) Bone mineral measurements: automated determination of the midvertebral CT section. Radiology 168: 219–221

    PubMed  CAS  Google Scholar 

  14. Steiger P, Block JE, Steiger S, Heuck A, Friedlander A, Ettinger B, Harris ST, Glüer CC, Genant HK (1990) Spinal bone mineral density by quantitative computed tomography: effect of region of interest, vertebral level, and technique. Radiology 175: 537–543

    PubMed  CAS  Google Scholar 

  15. Guglielmi G, Giannatempo GM, Blunt BA, Grampp S, Glüer CC, Cammisa M, Genant HK (1995) Spinal bone mineral density by quantitative computed tomography in a normal Italian population. Eur Radiol 5: 269–275

    Google Scholar 

  16. Cann CE (1987) QCT applications: comparison of current scanners. Radiology 162: 257–261

    PubMed  CAS  Google Scholar 

  17. Boden SD, Goodenough DJ, Stockham CD, Jacobs E, Dina T, Allman RM (1989) Precise measurement of vertebral bone density using computed tomography without the use of an external reference phantom. J Digit Imag 2: 31–38

    Article  CAS  Google Scholar 

  18. Gudmundsdottir H, Jonsdottir B, Kristinsson S, Johanesson A, Goodenough DJ, Sigurdsson G (1993) Vertebral bone density in Icelandic women using quantitative computed tomography without an external reference phantom. Osteoporos Int 3: 84–89

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki S, Yamamuro T, Okumura H, Yamamoto I (1991) Quantitative computed tomography: comparative study using different scanners with two calibration phantoms. Br J Radiol 64: 1001–1006

    Article  PubMed  CAS  Google Scholar 

  20. Goodsitt MM (1992) Conversion relations for quantitative CT bone mineral density measured with solid and liquid calibration standards. Bone Miner 19: 145–148

    Article  PubMed  CAS  Google Scholar 

  21. Faulkner KG, Glüer CC, Grampp S, Genant HK (1993) Cross calibration of liquid and solid QCT calibration standards: corrections to UCSF normative data. Osteoporos Int 3: 36–43

    Article  PubMed  CAS  Google Scholar 

  22. Glüer CC, Engelke K, Jergas M, Hagiwara S, Grampp S, Genant HK (1993) Changes in calibration standards for quantitative computed tomography: recommendations for clinical practice. Osteoporos Int 3: 286–287

    Article  PubMed  Google Scholar 

  23. Genant HK, Boyd DP (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12: 545–551

    Article  PubMed  CAS  Google Scholar 

  24. Cann CE, Genant HK (1983) Single versus dual-energy CT for vertebral mineral quantification. J Comput Assist Tomogr 7: 551–552

    Article  Google Scholar 

  25. Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB (1986) Influence of vertebral fat content on quantitative CT density. Radiology 159: 463–466

    PubMed  CAS  Google Scholar 

  26. Glüer CC, Genant HK (1989) Impact of marrow fat on accuracy of quantitative CT. J Comput Assist Tomogr 13: 1023–1035

    Article  PubMed  Google Scholar 

  27. Reinbold WD, Genant HK, Reiser UJ, Harris ST, Ettinger B (1986) Bone mineral content in early-postmenopausal osteoporotic women and postmenopausal women: comparison of measurements methods. Radiology 160: 469–478

    PubMed  CAS  Google Scholar 

  28. Glüer CC, Reiser UJ, Davis CA, Rutt BK, Genant HK (1988) Vertebral mineral determination by quantitative computed tomography (QCT): accuracy of single and dual energy measurements. J Comput Assist Tomogr 12: 242–258

    Article  PubMed  Google Scholar 

  29. Pacifici R, Susman N, Carr PL, Birge SJ, Avioli LV (1987) Single and dual energy tomography analysis of spinal trabecular bone: a comparative study in normal and osteoporotic women. J Clin Endocrinol Metab 64: 209–214

    Article  PubMed  CAS  Google Scholar 

  30. Reinbold WD, Adler CP, Kalender WA, Lente R (1991) Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography. Skel Radiol 20: 25–29

    Article  CAS  Google Scholar 

  31. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6: 1–7

    Article  PubMed  CAS  Google Scholar 

  32. Heuck A, Block J, Glüer CC, Steiger P, Genant HK (1989) Mild versus definitive osteoporosis: comparison of bone densitometry techniques using different statistical models. J Bone Miner Res 4: 891–899

    Article  PubMed  CAS  Google Scholar 

  33. Sambrook P, Barlett C, Evans R, Hesp R, Katz D, Reeve J (1985) Measurements of lumbar spine bone mineral: a comparison of dual photon absorptiometry and computed tomography. Br J Radiol 58: 621–624

    Article  PubMed  CAS  Google Scholar 

  34. Ross PD, Genant HK, Davis JW, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3: 120–126

    Article  PubMed  CAS  Google Scholar 

  35. Larnach TA, Boyd SJ, Smart RC, Butler SP, Rohl PG, Diamond TH (1992) Reproducibility of lateral spine scans using dual energy X-ray absorptiometry. Cal-cif Tissue Int 51: 255–258

    Article  CAS  Google Scholar 

  36. Rupich R, Pacifici R, Griffin MG, Vered I, Susman N, Avioli LV (1990) Lateral dual energy radiography: a new method for measuring vertebral bone density: a preliminary study. J Clin Endocrinol Metab 70: 1768–1770

    Article  PubMed  CAS  Google Scholar 

  37. Slosman DO, Rizzoli R, Donath A, Bonjour JP (1990) Vertebral bone mineral density measured laterally by dual-energy X-ray absorptiometry. Osteoporos Int 1: 23–29

    Article  PubMed  CAS  Google Scholar 

  38. Reid IR, Evans MC, Stapleton J (1992) Lateral spine densitometry is a more sensitive indicator of glucocorticoid-induced bone loss. J Bone Miner Res 7: 1221–1225

    Article  PubMed  CAS  Google Scholar 

  39. Yu W, Glüer CC, Grampp S, Jergas M, Fuerst T, Wu CY, LuY, Fan B, Genant HK (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5: 433–439

    CAS  Google Scholar 

  40. Cummings S, Marcus R, Palermo L, Ensrud K, Genant HK (1994) Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? J Bone Miner Res 9: 1429–1432

    Article  PubMed  CAS  Google Scholar 

  41. Jergas M, Breitenseher M, Glüer CC,Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10: 1101–1110

    CAS  Google Scholar 

  42. Heitz M, Kalender W (1994) Evaluation of femoral density and strength using volumetric CT and anatomical coordinate systems. Bone 25: S11

    Google Scholar 

  43. Sartoris DJ, Andre M, Resnick C, Resnick D (1986) Trabecular bone density in the proximal femur: quantitative CT assessment. Radiology 160: 707–712

    PubMed  CAS  Google Scholar 

  44. Bhasin S, Sartoris DJ, Fellingham L, Zlatkin MB, Andre M, Resnick D (1988) Three-dimensional quantitative CT of the proximal femur: relationship to vertebral trabecular bone density in postmenopausal women. Radiology 167: 145–149

    PubMed  CAS  Google Scholar 

  45. Lang T, Heitz M, Keyak J, Genant HK (1996) A 3D anatomic coordinate system for hip QCT. Osteoporos Int 6: S203

    Article  Google Scholar 

  46. Esses SI, Lotz JC, Hayes WC (1989) Biomechanical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography. J Bone Miner Res 4: 715–722

    Article  PubMed  CAS  Google Scholar 

  47. Alho A, Hoiseth A, Torstein H (1989) Bone-mass distribution in the femur. Acta Orthop Scand 60: 101–104

    Article  PubMed  CAS  Google Scholar 

  48. Smith M, Cody DD, Goldstein S, Cooperman A, Matthews L, Flynn M (1992) Proximal femoral density and its correlation to fracture load and hip-screw penetration load. Clin Orthop 283: 244–251

    PubMed  Google Scholar 

  49. Lotz JC, Hayes WC (1990) Estimates of hip fracture risk from falls using quantitative computed tomography. J Bone Joint Surg Am 72: 689–700

    PubMed  CAS  Google Scholar 

  50. Lang T, Augat P, Heitz M, Genant HK (1996) Volumetric QCT of the spine: comparison to single-slice QCT and DXA. J Bone Miner Res 11: 479

    Google Scholar 

  51. Cody DD (1991) Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine 16: 146–154

    PubMed  CAS  Google Scholar 

  52. Hangartner TN, Gilsanz V (1993) Measurement of cortical bone by computed tomography. Calcif Tissue Int 52: 160

    Google Scholar 

  53. Sandor T, Felsenberg D, Kalender W, Brown E (1991) Global and regional variations in the spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab 72: 1157–1168

    Article  PubMed  CAS  Google Scholar 

  54. Sandor T, Felsenberg D, Kalender W, Clain A, Brown E (1992) Compact and trabecular components of the spine using quantitative computed tomography. Calcif Tissue Int 50: 502–506

    Article  PubMed  CAS  Google Scholar 

  55. Cody DD, Flynn MJ, Vickers DS (1989) A technique for measuring regional bone mineral density in human lumbar vertebral bodies. Med Phys 16: 766–772

    Article  PubMed  CAS  Google Scholar 

  56. Flynn MJ, Cody DD (1993) The assessment of vertebral bone macroarchitecture with X-ray computed tomography. Calcif Tissue Int 53: S170–175

    Article  PubMed  Google Scholar 

  57. Braillon PM, Bochu M, Meunier PJ (1993) Quantitative computed tomography (QCT): a new analysis of bone quality in osteoporosis and osteomalacia. Calcif Tissue Int 52: 166

    Google Scholar 

  58. Engelke K, Grampp S, Glüer CC, Jergas M, Yang SO, Genant HK (1995) Significance of QCT bone mineral density and its standard deviation as parameters to evaluate osteoporosis. J Comput Assist Tomogr 19: 111–116

    Article  PubMed  CAS  Google Scholar 

  59. Chevalier F, Laval-Jeantet AM, Laval-Jeantet M, Bergot C (1992) CT image analysis of the vertebral trabecular network in vivo. Calcif Tissue Int 51: 8–13

    Article  PubMed  CAS  Google Scholar 

  60. Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1995) Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 194: 55–59

    PubMed  CAS  Google Scholar 

  61. Wang X, Lang T, Heitz M, Ouyang X, Engelke K, Genant HK (1996) Comparison of spinal trabecular structure analysis and QCT spinal BMD: an in vivo, low-dose pilot study. J Bone Miner Res 11: S474

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guglielmi, G., Lang, T.F., Cammisa, M., Genant, H.K. (1998). Quantitative Computed Tomography at the Axial Skeleton. In: Genant, H.K., Guglielmi, G., Jergas, M. (eds) Bone Densitometry and Osteoporosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80440-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80440-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80442-7

  • Online ISBN: 978-3-642-80440-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics