Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 15))

Summary

Following an introduction, which discusses the motivation for studying integer programming, the relevance of computational complexity and the relative merits of integer and dynamic programming, the branch and bound method is introduced in general terms. Various types of global entity to which it can be applied are introduced. These are integer variables, semicontinuous variables, special ordered sets and chains of linked ordered sets. A discussion of the algorithmic details follows. Finally, various approaches to automatic model reformulation are discussed: this seems to be the most important current area of integer programming research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E.M.L. Beale (1968) Mathematical Programming in Practice (Pitmans. London).

    Google Scholar 

  • E.M.L. Beale (1980) “Branch and bound methods for numerical optimization of non-convex functions” COMPSTAT 80 Proceedings in Computational Statistics Edited by M.M. Barritt and D. Wishart pp 11–20 (Physica Verlag. Wien).

    Google Scholar 

  • E.M.L. Beale (1983) “A mathematical programming model for the long-term development of an off-shore gas field” Discrete Applied Mathematics 5 pp 1–9.

    Article  Google Scholar 

  • E.M.L. Beale and J.J.H. Forrest (1976) “Global optimization using special ordered sets” Mathematical Programming 10 pp 52–69.

    Article  MATH  MathSciNet  Google Scholar 

  • E.M.L. Beale and J.A. Tomlin (1970) “Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables” in Proceedings of the Fifth International Conference on Operational Research Ed. J. Lawrence pp 447–454. (Tavistock Publications. London).

    Google Scholar 

  • A.L. Brearley, G. Mitra and H.P. Williams (1975) “Analysis of mathematical programming problems prior to applying the simplex method.” Mathematical Programming 8 pp 54–83.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Crowder, E.L. Johnson and M.W. Padberg (1983) “Solving large-scale zero-one linear programming problems” Operations Research 31 pp 803–834.

    Article  MATH  Google Scholar 

  • N. Driebeek (1966) “An algorithm for the solution of mixed integer programming problems” Management Science 12 pp 576–587.

    Article  Google Scholar 

  • J.J.H. Forrest, J.P.H. Hirst and J.A. Tomlin (1974) “Practical solution of large mixed integer programming problems with UMPIRE” Management Science 20 pp 736–773.

    Article  MATH  MathSciNet  Google Scholar 

  • A.M. Geoffrion and R.E. Marsten (1972) “Integer Programming Algorithms: A framework and state-of-the-art-survey” Management Science 18 pp 465–491.

    Article  MATH  MathSciNet  Google Scholar 

  • R.E. Gomory (1958) “Outline of an algorithm for integer solutions to linear programs” Bulletin of the American Mathematical Society 64 pp-275–278.

    Article  MATH  MathSciNet  Google Scholar 

  • A.H. Land and S. Powell (1979) “Computer codes for problems of integer programming” in Annals of Discrete Mathematics 5; Discrete Optimization Edited by P.L. Hammer, E.L. Johnson and B.H. Korte. pp 221–269 (North Holland Publishing Company. Amsterdam).

    Google Scholar 

  • K.L. Hoffman and M.W. Padberg (1985) “LP-Based combinatorial problem solving”. This volume.

    Google Scholar 

  • J.D.C. Little, K.C. Murty, D.W. Sweeney and C. Karel (1963) “An algorithm for the traveling salesman problem” Operations Research 11 pp 972–989.

    Article  MATH  Google Scholar 

  • H.M. Markowitz and A.S. Manne (1957) “On the solution of discrete programming problems” Econometrica 25 pp 84–110.

    Article  MATH  MathSciNet  Google Scholar 

  • C.E. Miller (196 3) “The simplex method for local separable programming” in Recent Advances in Mathematical Programming Edited by R.L. Graves and P. Wolfe pp 89–100 (McGraw Hill. New York).

    Google Scholar 

  • A.H.G. Rinnooy and G.T. Timmer (1985) “Stochastic methods for global optimization” This volume.

    Google Scholar 

  • J.A. Tomlin (19 71) “An improved branch and bound method for integer programming” Operations Research 19 pp 1070–1075.

    Article  MathSciNet  Google Scholar 

  • H.P. Williams (1978) Model Building in Mathematical Programming (Wiley. Chichester).

    MATH  Google Scholar 

  • H.P. Williams (1985) “Model Building in Linear and Integer Programming” This volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beale, E.M.L. (1985). Integer Programming. In: Schittkowski, K. (eds) Computational Mathematical Programming. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82450-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82450-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82452-4

  • Online ISBN: 978-3-642-82450-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics