Skip to main content

GC-MS Methods for Lower Plant Glycolipid Fatty Acids

  • Chapter
Gas Chromatography/Mass Spectrometry

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 3))

Abstract

The aim of this article is to give a description of the GC-MS methods for lower plant glycolipid fatty acids. Although the text deals mainly with examples of algae and mosses, it should be kept in mind that the methods presented are frequently also suitable for higher plants. However, when studying new or not well-known plant material, the suitability of methods should always be tested prior to serious experimental work. It can be stated that, in a sense, higher plants are easier material for glycolipid studies, as they are much more homogeneous with regard to the lipids, compared, for example, with the algae. The algae are also very varied in cell structure, which means that their lipid extractability can at times be difficult, depending on the species studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackman RG (1963) Structural of unsaturated fatty acid esters through graphical comparison of gas-liquid chromatographic retention times on a polyester substrate. J Am Oil Chem Soc 40:558–564

    Google Scholar 

  • Albertyn DE, Bannon CD, Craske JD, Hai NT, O’Rourke KL, Szonyi C (1982) Analysis of fatty acid methyl esters with high accuracy and reliability I. Optimization of flame-ionization detectors with respect to linearity. J Chromatogr 247:47–61

    CAS  Google Scholar 

  • Allen CF, Good P, Davis HF, Chisum P, Fowler SD (1966) Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae. J Am Oil Chem Soc 43:223–231

    CAS  Google Scholar 

  • Allen CF, Good P, Holton RW (1970) Lipid composition of Cyanidium. Plant Physiol 46:748–751

    PubMed  CAS  Google Scholar 

  • Anderson R, Livermore BP, Kates M, Volcani BE (1978) The lipid composition of the non-photosynthetic diatom Nitzschia alba. Biochim Biophys Acta 528:77–88

    PubMed  CAS  Google Scholar 

  • Aro E-M, Karunen P (1979) Effect of changed environmental conditions on glycolipids of the mosses Pleurozium schreberi and Ceratodon purpureus. Physiol Plant 45:201–206

    CAS  Google Scholar 

  • Arrendale RF, Chapman GW, Chortyk OT (1983) Gas chromatographic analyses of fatty acids on laboratory-prepared fused silica Silar 10C capillar columns. J Agric Food Chem 31:1334–1338

    CAS  Google Scholar 

  • Badings HT, de Jong C (1983) Glass capillary gas chromatography of fatty acid methyl esters. A study of conditions for the quantitative analysis of short-and long-chain fatty acids in lipids. J Chromatogr 279:493–506

    CAS  Google Scholar 

  • Bailey RW, Bourne EJ (1960) Colour reactions given by sugar and diphenylamine-aniline spray reagents on paper chromatograms. J Chromatogr 4:206–213

    CAS  Google Scholar 

  • Bailey DS, Northcote DH (1976) Phospholipid composition of the plasma membrane of the green alga, Hydrodictyon africanum. Biochem J 156:295–300

    PubMed  CAS  Google Scholar 

  • Barta IC, Kömives T (1984) Gas-liquid chromatographic method for the rapid analysis of the epicuticular wax compositions of plants. J Chromatogr 287:438–441

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Carroll KK, Cutts JH, Murray GD (1968) The lipids of Listeria monocytogenes. Can J Biochem 46:899–904

    PubMed  CAS  Google Scholar 

  • Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc UK 49:97–116

    CAS  Google Scholar 

  • Clarkson DT, Hall KC, Roberts JKM (1980) Phospholipid composition and fatty acid de-saturation in the roots of rye during acclimatization of low temperature. Planta 149:464–471

    CAS  Google Scholar 

  • Clayton TA, MacMurray TA, Morrison WR (1970) Identification of wheat flour lipids by thin-layer chromatography. J Chromatogr 47:277–281

    CAS  Google Scholar 

  • Constantopoulos G, Bloch K (1967) Effect of light intensity on the lipid composition of Euglena gracilis. J Biol Chem 242:3538–3542

    CAS  Google Scholar 

  • Debbrecht FJ (1977) Qualitative and quantitative analysis by gas chromatography II. Quantitative analysis. In: Grob RL (ed) Modern practice of gas chromatography. John Wiley, New York, p 166

    Google Scholar 

  • DeMort CL, Lowry R, Tinsley I, Phinney HK (1972) The biochemical analysis of some estuarine phytoplankton species I. Fatty acid composition. J Phycol 8:211–216

    Google Scholar 

  • Diepenbrock W (1981) Zur Umweltvariabilität der Fettsäure-Zusammensetzung von Ga-laktolipiden in Rapsblättern. Fette Seifen Anstrichm 83:297–302

    CAS  Google Scholar 

  • Döhler G, Datz G (1980) Effect of light on lipid and fatty acid composition of cyanobac-teria, Anacystis nidulans (Synechococcus). Z Pflanzenphysiol 100:427–435

    Google Scholar 

  • Douce R, Holtz RB, Benson AA (1973) Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem 248:7215–7222

    PubMed  CAS  Google Scholar 

  • Drozd J (1981) Chemical derivatization in gas chromatography. Elsevier, Amsterdam

    Google Scholar 

  • Folch J, Lees M, Sloane-Stanley (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Gardner HW (1968) Preparative isolation of monogalactosyl and digalactosyl diglycerides by thin layer chromatography. J Lipid Res 9:139–141

    PubMed  CAS  Google Scholar 

  • Gellerman JL, Anderson WH, Richardson DG, Schlenk H (1975) Distribution of arachidonic and eicosapentaenoic acids in the lipids of mosses. Biochim Biophys Acta 388:277–290

    PubMed  CAS  Google Scholar 

  • Golovnya RV, Kuz’menko TE, Vasil’ev AV (1984) Stable and reproducible selective glass capillary columns with polysiloxane stationary phases for the analysis of fatty acid methyl esters. J Chromatogr 292:49–55

    CAS  Google Scholar 

  • Grob K (1984) Effect of “dirt” injected on-column in capillary gas chromatography; analysis of the sterol fraction of oils as an example. J Chromatogr 287:1–14

    CAS  Google Scholar 

  • Grob K, Bossard M (1984) Effect of dirt on quantitative analyses by capillary gas chromatography with splitless injection. J Chromatogr 294:65–75

    CAS  Google Scholar 

  • Grob K, Neukom HP (1984) Glass wool in the injector insert for quantitative analysis in splitless injection. Chromatographia 18:517–519

    CAS  Google Scholar 

  • Haken JK (1984) Developments in polysiloxane stationary phases in gas chromatography. J Chromatogr 198:153–155

    Google Scholar 

  • Hallgren B, Ryhage R, Stenhagen E (1959) The mass spectra of methyl oleate, methyl linoleate, and methyl linolenate. Acta Chem Scand 13:845–847

    CAS  Google Scholar 

  • Herslöf B (1979) Application of TLC/FID in lipid analysis. In: Appelqvist L.A, Liljenberg C (eds) Advances in the biochemistry and physiology of plant lipids. Elsevier/NorthHolland, Amsterdam, p 301

    Google Scholar 

  • Hirayama O, Morita K (1980) A simple and sensitive method for the quantitative analysis of chloroplast lipids by use of thin layer chromatography and flame ionization detector. Agric Biol Chem 44:2217–2219

    CAS  Google Scholar 

  • Hirvisalo EL, Renkonen O (1970) Composition of human serum sphingomyelins. J Lipid Res 11:54–59

    PubMed  CAS  Google Scholar 

  • Jamieson GR (1970) Structure determination of fatty esters by gas liquid chromatography. In: Gunstone FD (ed) Topics in lipid chemistry, vol 1. Logos, London, p 107

    Google Scholar 

  • Jamieson GR (1975) GLC identification techniques for long-chain unsaturated fatty acids. J Chromatogr Sci 13:491–497

    PubMed  CAS  Google Scholar 

  • Johns RB, Perry GJ (1977) Lipids of the marine bacterium Flexibacter polymorphus. Arch Mikrobiol 114:267–271

    CAS  Google Scholar 

  • Johns RB, Nichols PD, Perry GJ (1979) Fatty acid composition of ten marine algae from Australian waters. Phytochemistry 18:799–802

    CAS  Google Scholar 

  • Kabata K, Sadakane H, Miyachi M, Nagata K, Hatano S, Watanabe T (1979) Studies on lipid changes during the development of frost hardiness in Chlorella ellipsoidea. J Fac Agric Kyushu Univ 23:155–161

    CAS  Google Scholar 

  • Kabata K, Sadakane H, Kurose M, Kobayakawa A, Watanabe T, Hatano S (1980) Changes in fatty acid composition of membrane fractions during hardening of Chlorella ellipsoidea. J Fac Agr Kyushu Univ 25:91–97

    CAS  Google Scholar 

  • Karunen P (1977) Determination of fatty acid composition of spore lipids of the moss Polytrichum commune by glass capillary column gas chromatography. Physiol Plant 40:239–243

    CAS  Google Scholar 

  • Karunen P, Aro E-M (1979) Fatty acid composition of polar lipids in Ceratodon purpureus and Pleurozium schreberi. Physiol Plant 45:265–269

    CAS  Google Scholar 

  • Kates M (1970) Plant phospholipids and glycolipids. Adv Lipid Res 8:225–265

    CAS  Google Scholar 

  • Kates M (1972) Techniques of lipidology: isolation, analysis and identification of lipids. North-Holland/American Elsevier, Amsterdam

    Google Scholar 

  • Kates M, Volcani BE (1966) Lipid components of diatoms. Biochim Biophys Acta 116:264–278

    PubMed  CAS  Google Scholar 

  • Khan M-U, Williams JP (1977) Improved thin-layer chromatographic method for the separation of major phospholipids and glycolipids from plant lipid extracts and phosphatidyl glycerol and bis(monoacylglyceryl)phosphate from animal lipid extracts. J Chromatogr 140:179–185

    PubMed  CAS  Google Scholar 

  • Kleinschmidt MG, McMahon VA (1970) Effect of growth temperature on the lipid composition of Cyanidium caldarium II. Glycolipid and phospholipid components. Plant Physiol 46:290–293

    PubMed  CAS  Google Scholar 

  • Klopfenstein WE (1971) On methylation of unsaturated acids using boron trihalide-methanol reagents. J Lipid Res 12:773–776

    PubMed  CAS  Google Scholar 

  • Knapp DR (1979) Handbook of analytical derivatization reagents. John Wiley, New York

    Google Scholar 

  • Kobayashi T (1980) Gas-liquid chromatographic separation of geometric isomers of unsaturated fatty acid methyl esters using a glass capillary column. J Chromatogr 194:404–409

    CAS  Google Scholar 

  • Koskimies K, Simola LK (1980) The fatty acid composition of some Sphagnum species. Can J Bot 58:259–263

    CAS  Google Scholar 

  • Kozuharov S (1980) Coating support-coated open tubular columns with Silar 10C or All-tech CS-10 and Silica T40 for separation of isomers of fatty acid methyl esters. J Chromatogr 198:153–155

    CAS  Google Scholar 

  • Kuksis A (1983) Lipids. In: Heftmann E (ed) Chromatography: Fundamentals and applications of chromatographic and electrophoretic methods part B: Applications. Elsevier, Amsterdam, p 75

    Google Scholar 

  • Kuksis A, Stachnyk O, Holub BJ (1969) Improved quantitation of plasma lipids by direct gas-liquid chromatography. J Lipid Res 10:660–667

    PubMed  CAS  Google Scholar 

  • Lee RF, Loeblich AR (1971) Distribution of 21: 6 hydrocarbon and its relationship to 22: 6 fatty acid in algae. Phytochemistry 10:593–602

    CAS  Google Scholar 

  • Lem NW, Khan M, Watson GR, Williams JP (1980) The effect of light intensity, day length, and temperature on fatty acid synthesis and desaturation in Vicia faba L. J Exp Bot 31:289–298

    CAS  Google Scholar 

  • Lercker G (1983) Short capillary columns in the analysis of lipids. J Chromatogr 279:543–548

    CAS  Google Scholar 

  • Lie Ken Jie MSF (1980) The characterization of long-chain fatty acids and their derivatives by chromatography. In: Giddings JC, Gruschka E, Cazes J, Brown PR (eds) Advances in chromatography, vol 18. Marcel Dekker, New York, p 1

    Google Scholar 

  • Luukkonen A, Kääriäinen L, Renkonen O (1976) Phospholipids of Semliki forest virus grown in cultured mosquito cells. Biochim Biophys Acta 450:109–120

    PubMed  CAS  Google Scholar 

  • Lynch DV, Gundersen RE, Thompson GA (1983) Separation of galactolipid species by high performance liquid chromatography. Plant Physiol 72:903–905

    PubMed  CAS  Google Scholar 

  • Matucha M, Zilka L, Svihel K (1972) Gas chromatographic analysis of the higher fatty acids of the alga Chlorella vulgaris (pyrenoidosa). J Chromatogr 65:371–376

    PubMed  CAS  Google Scholar 

  • McCloskey JA (1970) Mass spectrometry of fatty acid derivatives. In: Gunstone FD (ed) Topics in lipid chemistry, vol 1. Logos, London, p 369

    Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  • Moseley KR, Thompson GA (1980) Lipid composition and metabolism of Volvox carteri. Plant Physiol 65:260–265

    PubMed  CAS  Google Scholar 

  • Nelson GL (1974) Elution characteristics of fatty acid methyl esters on capillary columns. Lipids 9:254–263

    PubMed  CAS  Google Scholar 

  • Nichols BW (1965a) Light induced changes in the lipids of Chlorella vulgaris. Biochim Biophys Acta 106:274–279

    CAS  Google Scholar 

  • Nichols BW (1965b) The lipids of a moss (Hypnum cupressiforme) and of the leaves of green holly (Ilex aquifolium). Phytochemistry 4:769–772

    CAS  Google Scholar 

  • Nichols BW, Appleby RS (1969) The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915

    CAS  Google Scholar 

  • Nichols BW, Moorhouse R (1969) The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris. Lipids 4:311–316

    PubMed  CAS  Google Scholar 

  • Nyberg H, Koskimies-Soininen K (1984a) The glycolipid fatty acids of Porphyridium purpureum cultured in the presence of detergents. Phytochemistry 23:751–757

    CAS  Google Scholar 

  • Nyberg H, Koskimies-Soininen K (1984b) The phospholipid fatty acids of Porphyridium purpureum cultured in the presence of Triton X-100 and sodium desoxycholate. Phytochemistry 23:2489–2495

    CAS  Google Scholar 

  • O’Brien JS, Benson AA (1964) Isolation and fatty acid composition of the plant sulfolipid and galactolipids. J Lipid Res 5:432–436

    PubMed  Google Scholar 

  • Opute FI (1974) Lipid and fatty acid compositions of diatoms. J Exp Bot 25:823–835

    CAS  Google Scholar 

  • Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    CAS  Google Scholar 

  • Podojil M, Lívanskÿ K, Prokes B, Wurst M (1978) Fatty acids in green algae cultivated on a pilot-plant scale. Folia Microbiol 23:444–447

    CAS  Google Scholar 

  • Pohl P, Glasl H, Wagner H (1970) Zur Analytik pflanzlicher Glyko-and Phospholipide and ihrer Fettsäuren I. Eine neue dünnschichtchromatographische Methode zur Trennung pflanzlicher Lipoide and quantitative Bestimmung ihrer Fettsäure-Zusammensetzung. J Chromatogr 49:488–492

    PubMed  CAS  Google Scholar 

  • Renkonen O, Luukkonen A (1976) Thin-layer chromatography of phospholipids and glycolipids. In: Marinetti GV (ed) Lipid chromatographic analysis, vol 1, 2nd edn. Marcel Dekker, New York, p 1

    Google Scholar 

  • Rezanka T, Podojil M (1984) The very long chain fatty acids of the green alga. Chlorella kessleri. Lipids 19:472–473

    CAS  Google Scholar 

  • Rezanka T, Vokoun J, Slavícek J, Podojil M (1983) Determination of fatty acids in algae by capillary gas chromatography-mass spectrometry. J Chromatogr 268:71–78

    CAS  Google Scholar 

  • Rouser G, Kritchevsky G, Yamamoto A (1976) Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids. In: Marinetti GV (ed) Lipid chromatographic analysis, vol 3, 2nd edn. Marcel Dekker, New York, p 713

    Google Scholar 

  • Schantz R, Blee E, Duranton H (1976) Métabolisme des galactolipides chez Euglena gracilis. Physiol Vég 14:141–157

    CAS  Google Scholar 

  • Schill R (1977) Instrumentation. In: Grob RL (ed) Modern practice of gas chromatography. John Wiley, New York, p 289

    Google Scholar 

  • Schomburg G, Husmann H, Behlau H, Schulz F (1983a) Cold sample injection with either the split or splitless mode of temperature-programmed sample transfer. Design and testing of a new, electrically heated construction for universal application of different modes of sampling. J Chromatogr 279:251–258

    CAS  Google Scholar 

  • Schomburg G, Husmann H, Schulz F, Teller G, Bender M (1983b) Cold sample injection with either the split or splitless mode of temperature-programmed sample transfer. Comparison to cold on-column injection with a commercial device. J Chromatogr 279:259–267

    CAS  Google Scholar 

  • Settlage J, Jaeger H (1984) Advantages of fused silica capillary gas chromatography for GC-MS applications. J Chromatogr Sci 22:192–197

    CAS  Google Scholar 

  • Siebertz HP, Heinz E, Joyard J, Douce R (1980) Labelling in vivo and in vitro molecular species of lipids from chloroplast envelopes and thylakoids. Eur J Biochem 108:177185

    Google Scholar 

  • Simola LK, Koskimies-Soininen K (1980) The effect of fluoride on the growth and fatty acid composition of Sphagnum fimbriatum at two temperatures. Physiol Plant 50:74–77

    CAS  Google Scholar 

  • Simola LK, Koskimies-Soininen K (1984) Comparison of glycolipids and plastids in callus cells and leaves of Alnus and Betula. Plant Cell Physiol 25:1329–1340

    CAS  Google Scholar 

  • Sisfontes L, Nyborg G, Svensson L, Blomstrand R (1981) Separation of complex long-chain fatty acid mixtures by high-performance glass capillary gas chromatography. J Chromatogr 216:115–125

    CAS  Google Scholar 

  • Skipski VP, Smolowe AF, Barclay M (1967) Separation of neutral glycosphingolipids and sulfatides by thin-layer chromatography. J Lipid Res 8:295–299

    PubMed  CAS  Google Scholar 

  • Skowronski G, Garrigan OW (1983) Glycolipids and thylakoid proteins in chloroplasts and streptomycin-bleached lamellae of Euglena. Lipids 18:539–544

    CAS  Google Scholar 

  • Smith SL (1984) Coupled systems: Capillary GC-MS and capillary GC-FTIR. J Chromatogr Sci 22:143–148

    CAS  Google Scholar 

  • Solberg Y (1983) Lipid constituents of the moss Mniobryum wahlenbergii var. glaciale. Cryptogam Bryol Lichenol 4:129–143

    CAS  Google Scholar 

  • Stein RA, Slawson W, Mead JF (1976) Gas-liquid chromatography of fatty acids and derivatives. In: Marinetti GV (ed) Lipid chromatographic analysis, vol 3, 2nd edn. Marcel Dekker, New York, p 857

    Google Scholar 

  • Sullivan JJ (1977) Detectors I. In: Grob RL (ed) Modern practice of gas chromatography. John Wiley, New York, p 213

    Google Scholar 

  • Supina WR (1977) Columns and column selection in gas chromatography. In: Grob RL (ed) Modern practice of gas chromatography. John Wiley, New York, p 113

    Google Scholar 

  • Sweeley CC, Bentley R, Makita M, Wells WW (1963) Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc 85:2497–2507

    CAS  Google Scholar 

  • Tanaka M, Takase K, Ishii J, Itoh T, Kaneko H (1984) Application of a thin-layer chromatography-flame ionization detection system for the determination of complex lipid constituents. J Chromatogr 284:433–440

    CAS  Google Scholar 

  • Tancrede P, Chauvette G, Leblanc RM (1981) General methods for the purification of lipids for surface pressure studies. J Chromatogr 207:387–393

    CAS  Google Scholar 

  • Tornabene TG, Holzer G, Peterson SL (1980) Lipid profile of the halophilic alga, Dunaliella saline. Biochem Biophys Res Commun 96:1349–1356

    PubMed  CAS  Google Scholar 

  • Wendt G, McCloskey JA (1970) Mass spectrometry of perdeuterated molecules of biolog-ical origin. Fatty acid esters from Scenedesmus obliquus. Biochemistry 9:4854–4866

    PubMed  CAS  Google Scholar 

  • Wettern M (1980) Lipid variation of the green alga Fritschiella tuberosa during growth in axenic batch culture. Phytochemistry 19:513–517

    CAS  Google Scholar 

  • Willard HH, Merritt LL, Dean JA, Settle FA (1981) Instrumental methods of analysis, 6th edn. Wadsworth, Belmont

    Google Scholar 

  • Williams MG, MacGee J (1983) Rapid determination of free fatty acids in vegetable oils by gas liquid chromatography. J Am Oil Chem Soc 60:1507–1509

    CAS  Google Scholar 

  • Wintermans JFGM, van Besouw A, Bögemann G (1981) Galactolipid formation in chloroplast envelopes II. Isolation-induced changes in galactolipid composition of envelopes. Biochim Biophys Acta 663:99–107

    PubMed  CAS  Google Scholar 

  • Wright DC, Berg LR, Patterson GW (1980) Effect of cultural conditions on the sterols and fatty acids of green algae. Phytochemistry 19:783–785

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nyberg, H. (1986). GC-MS Methods for Lower Plant Glycolipid Fatty Acids. In: Linskens, H.F., Jackson, J.F. (eds) Gas Chromatography/Mass Spectrometry. Modern Methods of Plant Analysis, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82612-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82612-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82614-6

  • Online ISBN: 978-3-642-82612-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics