Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 1))

Abstract

In gene-for-gene systems involving biotrophic parasites, active defence mechanisms are usually induced by avirulent but initially not by virulent races of a parasite. The reason why active defence responses do not result from compatible race-cultivar combinations or are ineffective is of considerable interest. Heath [1], among others, has advanced the hypothesis that compatibility could be the result of a suppression of host resistance responses by a virulent parasite (induced susceptibility). If such induced susceptibility was an active plant response rather than a constitutive failure of recognition, metabolic inhibitors might be expected to turn a compatible combination into an incompatible one. This has usually not been found to occur. However, there are many reports of metabolic inhibitors turning the incompatible combination into a compatible one. This indicates that resistance needs to be actively induced [2,3], although it does not preclude the possibility that susceptibility results from a constitutive absence of the induction stimulus in the parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heath, M.C, 1982, Absence of active defense mechanisms in compatible host pathogen interactions, in: “Active Defense Mechanisms in Plants”, R.K.S. Wood, ed., pp. 143–156, Plenum Press, New York and London.

    Google Scholar 

  2. Keen, N.T., Ersek, T., Long, M., Bruegger, B. and Holliday, M., 1981, Inhibition of the hypersensitive reaction of soybean leaves to incompatible Pseudomonas spp. by blasticidin S, streptomycin or elevated temperature, Physiol. Plant Pathol., 18: 325–337.

    CAS  Google Scholar 

  3. Keen, N.T. and Holliday, M.J., 1982, Recognition of bacterial pathogens by plants, in: “Phytopathogenic Prokaryotes”, Vol. 2, M.S. Mount and G.H. Lacy, eds., pp. 179–217, Academic Press, New York and London.

    Google Scholar 

  4. Ellingboe, A.H., 1981, Changing concepts in host-pathogen genetics, Annu. Rev. Phytopathology, 19: 125–143.

    Article  CAS  Google Scholar 

  5. Ellingboe, A.H., 1982, Genetic aspects of active defense, in: “Active Defense Mechanisms in Plants”, R.K.S. Wood, ed., pp. 179–192, Plenum Press, New York and London.

    Google Scholar 

  6. Bailey, J.A., 1982, Mechanisms of phytoalexin accumulation, in: “Phytoalexins”, J.A. Bailey and J.A. Mansfield, eds., pp. 289–318, Blackie, Glasgow and London.

    Google Scholar 

  7. Vance, T., Kirk, K. and Sherwood, R.T., 1980, Lignification as a mechanism of disease resistance, Annu. Rev. Phytopathology, 18: 259–288.

    Article  CAS  Google Scholar 

  8. Keen, N.T., 1975, Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens, Science, 74–75.

    Google Scholar 

  9. Klement, Z., 1982, Hypersensitivity, in: “Phytopathogenic Prokaryotes”, Vol. 2, M.S. Mount and G.H. Lacy, eds., pp. 149–177, Academic Press, New York and London.

    Google Scholar 

  10. Gardner, J.M. and Kado, C.I., 1976, Polygalacturonic acid trans-eliminase in the osmotic shock fluid of Erwinia rubri faciens: characterization of the purified enzyme and its effect on plant cells, J. Bacteriol., 127: 451–460.

    PubMed  CAS  Google Scholar 

  11. Bashan, Y., Okon, Y. and Henis, Y., 1982, Detection of a necrosis-inducing factor of non-host plant leaves produced by Pseudomonas syringae pv. tomato, Can. J. Bot., 60: 2453–2460.

    Article  CAS  Google Scholar 

  12. Yoshikawa, M., Keen, N.T. and Wang, M.C, 1983, A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation, Plant Physiol., 73: 497–506.

    Article  PubMed  CAS  Google Scholar 

  13. Stall, R.E. and Cook, A.A., 1979, Evidence that bacterial contact with the plant cell is necessary for the hypersensitive reaction but not the susceptible reaction, Physiol. Plant Pathol., 14: 77–84.

    Article  CAS  Google Scholar 

  14. Jones, D.R. and Deverall, B.J., 1978, The use of leaf transplants to study the cause of hypersentitivity to leaf rust, Puccinia recondita in wheat carrying the Lr20 gene, Physiol. Plant Pathol., 12: 311–319.

    Article  Google Scholar 

  15. De Wit, P.J.G.M. and Spikman, G., 1982, Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato, Physiol. Plant Pathol., 21: 1–11.

    Article  Google Scholar 

  16. De Wit, P.J.G.M., Hofman, J.E. and Aarts, J.M.M.J.G., 1984, Origin of specific elicitors of chlorosis and necrosis occurring in intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato, Physiol. Plant Pathol., 24: 17–23.

    Article  Google Scholar 

  17. De Wit, P.J.G.M., Hofman, J.E., Velthuis, G.C.M. and Kuć, J.A., 1985, Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato, Plant Physiol., 77: 642–647.

    Article  PubMed  Google Scholar 

  18. Albersheim, P. and Valent, B.S., 1978, Host-pathogen interactions in plants. Plants when exposed to oligosaccharides of fungal origin defend themselves by accumulating antibiotics, J. Cell Biol. 78: 627–643.

    Article  PubMed  CAS  Google Scholar 

  19. Darvill, A.G. and Albersheim, P., 1984, Phytoalexins and their elicitors. A defense against microbial infection in plants, Annu. Rev. Plant Physiol., 35: 243–276.

    Article  CAS  Google Scholar 

  20. Sharp, J.K., McNeil, M. and Albersheim, P., 1984, The primary structures of one elicitor-active and seven elicitor-inactive hexa (β-D-glucopyra-nosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea, J. Biol. Chem., 259: 11321–11326.

    PubMed  CAS  Google Scholar 

  21. Ossowski, P., Pilotti, A., Garegg, P.J. and Lindberg, B., 1984, Synthesis of a glucoheptaose and a glucooctaose that elicit phytoalexin accumulation in soybean, J. Biol. Chem., 259: 11337–11340.

    PubMed  CAS  Google Scholar 

  22. Keen, N.T., Yoshikawa, M. and Wang, M.C, 1983, Phytoalexin elicitor activity of carbohydrates from Phytophthora megasperma f. sp. glycinea and other sources, Plant Physiol., 71: 466–471.

    Article  PubMed  CAS  Google Scholar 

  23. Anderson, A.J., 1980, Differences in the biochemical composition and elicitor activity of extracellular components produced by three different races of a fungal plant pathogen, Colletotrichum lindemuthianum, Can. J. Microbiol., 26: 1473–1479.

    Article  PubMed  CAS  Google Scholar 

  24. Hadwiger, L.A., Beckman, J.M. and Adams, M.J., 1980, Chitosan as a component of pea-Fusarium solani interactions, Plant Physiol., 66: 205–211.

    Article  PubMed  CAS  Google Scholar 

  25. Hadwiger, L.A., Beckman, J.M. and Adams, M.J., 1981, Localization of fungal compounds in the pea-Fusarium interaction detected immunochemically with anti-chitosan and anti-fungal cell wall antisera, Plant Physiol., 67: 170–175.

    Article  PubMed  CAS  Google Scholar 

  26. Cruickshank, I.A.M. and Perrin, D.R., 1968, The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Monilinia fructicola, Life Sci., 7: 449–458.

    Article  CAS  Google Scholar 

  27. Keen, N.T. and Legrand, M., 1980, Surface glycoproteins: evidence that they may function as the race specific phytoalexin elicitors of Phytophthora megasperma f. sp. glycinea, Physiol. Plant Pathol., 17: 175–192.

    Article  CAS  Google Scholar 

  28. Stekoll, M. and West, CA., 1978, Purification and properties of an elicitor of castor bean phytoalexin from culture filtrates of the fungus Rhizopus stolonifer, Plant Physiol., 61: 38–45.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, S.C. and West, C.A., 1981, Polygalacturonase from Rhizopus stolonifer, an elicitor of casbene synthetase activity in castor bean Ricinus communis seedlings, Plant Physiol., 67: 633–639.

    Article  PubMed  CAS  Google Scholar 

  30. De Wit, P.J.G.M. and Roseboom, P.H.M., 1980, Isolation, partial characterization and specificity of glycoprotein elicitors from culture filtrates, mycelium and cell walls of Cladosporium fulvum (syn. Fulvia fulva), Physiol. Plant Pathol., 16: 391–408.

    Google Scholar 

  31. De Wit, P.J.G.M. and Kodde, E., 1981, Further characterization and cultivar specificity of glycoprotein elicitors from culture filtrates and cell walls of Cladosporium fulvum (syn. Fulvia fulva), Physiol. Plant Pathol., 18: 297–314.

    Google Scholar 

  32. Bostock, R.M., Kuć, J.A. and Laine, R.A., 1981, Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato, Science., 212: 67–69.

    Article  PubMed  CAS  Google Scholar 

  33. Kurantz, M.J. and Zacharius, R.M., 1981, Hypersensitive response in potato tuber: elicitation by combination of non-eliciting components from Phytophthora infestans, Physiol. Plant Pathol., 18: 67–77.

    CAS  Google Scholar 

  34. Bostock, R.M., Laine, R.A. and Kuć, J.A., 1982, Factors affecting the elicitation of sesquiterpenoid phytoalexin accumulation by eicosapentaenoic and arachidonic acids in potato, Plant Physiol., 70: 1417–1424.

    Article  PubMed  CAS  Google Scholar 

  35. Maniara, G., Laine, R. and Kuć, J., 1984, Oligosaccharides from Phytophthora infestans enhance the elicitation of sesquiterpenoid stress metabolites by arachidonic acid in potato, Physiol. Plant Pathol., 24: 177–186.

    Article  CAS  Google Scholar 

  36. Preisig, CL. and Kuć, J.A., 1985, Arachidonic acid related elicitors of the hypersensitive response in potato and enhancement of their activities by glucans from Phytophthora infestans, Arch. Biochem. Biophys., 236: 379–389.

    Article  PubMed  CAS  Google Scholar 

  37. Bloch, C.B., De Wit, P.J.G.M. and Kuc, J.A., 1984, Elicitating of phytoalexins by arachidonic and eicosapentaenoic acids: a host survey, Physiol. Plant Pathol., 25: 199–208.

    Article  CAS  Google Scholar 

  38. Hahn, M.G., Darvill, A.G. and Albersheim, P., 1981, Host-pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans, Plant Physiol., 68: 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  39. Hargreaves, J.A. and Bailey, J.A., 1978, Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged cells, Physiol. Plant Pathol., 13: 89–100.

    Article  CAS  Google Scholar 

  40. Bruce, R.J. and West, C.A., 1982, Elicitation of casbene synthetase activity in castor bean Ricinus communis. The role of pectic fragments of the plant cell wall in elicitation by a fungal endopolygalacturonase, Plant Physiol., 69: 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  41. Davis, K.R., Lyon, G.D., Albersheim, P. and Darvill, A.C, 1984, Host pathogen interactions. XXV. Endo-polygalacturonic acid lyase EC-4.2.2.2 from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments, Plant Physiol., 74: 52–60.

    Article  PubMed  CAS  Google Scholar 

  42. Nothnagel, E.A., McNeil, M., Albersheim, P. and Dell, A., 1983, Host pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins, Plant Physiol., 71: 916–926.

    Article  PubMed  CAS  Google Scholar 

  43. Bishop, P.D., Pearce, G., Bryant, J.E. and Ryan, C.A., 1984, Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of polygalacturonide and oligogalacturonide fragments, J. Biol. Chem., 259: 13172–13177.

    PubMed  CAS  Google Scholar 

  44. Walker-Simmons, M., Jin, D., West, CA., Hadwiger, L. and Ryan, CA., 1984, Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of pure fungal endopolygalacturonase pectic fragments and chitosans, Plant Physiol., 76: 833–836.

    Article  PubMed  CAS  Google Scholar 

  45. Walker-Simmons, M., Hadwiger, L. and Ryan, CA., 1983, Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and anti-nutrient proteinase inhibitors in tomato leaves, Biochem. Biophys. Res. Commun., 110: 194–199.

    Article  PubMed  CAS  Google Scholar 

  46. Keen, N.T. and Bruegger, B.B., 1977, Phytoalexins and chemicals that elicit their production in plants, in: “Host Plant Resistance to Pests”, P. Hedin, ed., pp. 1–26, American Chemical Society Symposium Series 62.

    Chapter  Google Scholar 

  47. Pearce, R.B. and Ride, J.P., 1982, Chitin and related compounds as elicitors of the lignification in wounded wheat leaves, Physiol. Plant Pathol., 20: 119–123.

    Article  CAS  Google Scholar 

  48. Bruegger, B.B. and Keen, N.T., 1979, Specific elicitors of glyceollin accumulation in the Pseudomonas glycinea-soybean host-parasite system, Physiol. Plant Pathol., 15: 43–51.

    Article  CAS  Google Scholar 

  49. Keen, N.T. and Yoshikawa, M., 1983, β-1,3-endoglucanase from soybean releases elicitor-active carbohydrates from fungal cell walls, Plant Physiol., 71: 460–465.

    Article  PubMed  CAS  Google Scholar 

  50. Garas, N.A., Doke, N. and Kuć, J., 1979, Suppression of the hypersensitive reaction in potato tubers by mycelial components from Phytophthora infestans, Physiol. Plant Pathol., 15: 117–126.

    Article  CAS  Google Scholar 

  51. Doke, N., Garas, N.A. and Kuć, J., 1979, Partial characterization and aspects of the mode of action of a hypersensitivity-inhibiting factor (HIF) isolated from Phytophthora infestans, Physiol. Plant Pathol., 15: 127–140.

    Article  CAS  Google Scholar 

  52. Doke, N., Garas, N.A. and Kuć, J., 1980, Effect on host hypersensitivity of suppressors released during the germination of Phytophthora infestans cytospores, Phytopathology, 70: 35–39.

    Article  CAS  Google Scholar 

  53. Doke, N. and Tomiyama, K., 1980, Suppression of the hypersensitive response of potato tuber protoplasts to hyphal wall components by water soluble glucans isolated from Phytophthora infestans, Physiol. Plant Pathol., 16: 177–186.

    Article  CAS  Google Scholar 

  54. Ziegler, E. and Pontzen, R., 1982, Specific inhibition of glucan-elicited glyceollin accumulation in soybeans by an extracellular mannan-glycoprotein of Phytophthora megasperma f. sp. glycinea, Physiol. Plant Pathol., 20: 321–331.

    Article  CAS  Google Scholar 

  55. Dazzo, F.B. and Truchet, G.L., 1983, Interactions of lectins and their saccharide receptors in the Rhizobium-like symbiosis, J. Membrane Biol., 73: 1–16.

    Article  CAS  Google Scholar 

  56. Sequeira, L., 1982, Determinants of plant response to bacterial infection, in: “Active Defense Mechanisms in Plants”, R.K.S. Wood, ed., pp. 85–102, Plenum Press, New York and London.

    Google Scholar 

  57. Sequeira, L. and Graham, T.L., 1977, Agglutination of avirulent strains of Pseudomonas solanacearum by potato lectin, Physiol. Plant Pathol., 11: 43–54.

    Article  CAS  Google Scholar 

  58. Leach, J.E., Cantrell, M.A. and Sequeira, L., 1982, A hydroxyproline-rich bacterial agglutinin from potato: its localization by immunofluorescence, Physiol. Plant Pathol., 21: 319–325.

    Article  CAS  Google Scholar 

  59. Slusarenko, A.J. and Wood, R.K.S., 1981, Differential agglutination of races 1 and 2 of Pseudomonas phaseolicola by a fraction from cotyledons of Phaseolus vulgaris cv. Red Mexican, Physiol. Plant Pathol., 18: 187–193.

    Google Scholar 

  60. Slusarenko, A.J. and Wood, R.K.S., 1983, Agglutination of Pseudomonas phaseolicola by pectic polysaccharide from leaves of Phaseolus vulgaris, Physiol. Plant Pathol., 23: 217–227.

    Article  Google Scholar 

  61. Fett, W.F. and Jones, S.B., 1982, Role of bacterial immobilization in race-specific resistance of soybean to Pseudomonas syringae pv. glycinea, Phytopathology, 72: 488–492.

    Article  Google Scholar 

  62. Fett, W.F. and Sequeira, L., 1980, A new bacterial agglutinin from soybean. II. Evidence against a role in determining pathogen specificity, Plant Physiol., 66: 853–858.

    Article  PubMed  CAS  Google Scholar 

  63. Romeiro, R., Karr, A. and Goodman, R.N., 1981, Isolation of a factor from apple that agglutinates Erwinia amylovora, Plant Physiol., 69: 772–777.

    Article  Google Scholar 

  64. Furuichi, N., Tomiyama, K. and Doke, N., 1980, The role of potato lectin in binding of germ tubes of Phytophthora infestans to potato cell membrane, Physiol. Plant Pathol., 16: 249–256.

    Article  CAS  Google Scholar 

  65. Garas, N.A. and Kuć, J., 1981, Potato lectin lyses zoospores from Phytophthora infestans and precipitates elicitors of terpenoid accumulation produced by the fungus, Physiol. Plant Pathol., 18: 227–237.

    CAS  Google Scholar 

  66. Nozue, M., Tomiyama, K. and Doke, N., 1980, Effect of N.N′-diacetyl-D-chitobiose, the potato lectin hapten and other sugars on hypersensitive reaction of potato tuber cells infected by incompatible and compatible races of Phytophthora infestans, Physiol. Plant Pathol., 17: 221–227.

    Article  Google Scholar 

  67. Kojima, M., Kawakita, K. and Uritani, I., 1982, Studies on a factor in sweet potato roots which agglutinates spores of Ceratocystis fimbriata black rot fungus, Plant Physiol., 69: 474–478.

    Article  CAS  Google Scholar 

  68. Hinch, J.M. and Clarke, A.E., 1980, Adhesion of fungal zoospores to root surfaces is mediated by carbohydrate determinants of the root slime, Physiol. Plant Pathol., 16: 303–307.

    CAS  Google Scholar 

  69. Cramer, C.L., Ryder, T.B., Bell, J.N. and Lamb, C.J., 1985, Rapid switching of plant gene expression induced by fungal elicitor, Science, 227: 1240–1242.

    Article  CAS  Google Scholar 

  70. Lawton, M.A., Dixon, R.A., Hahlbrock, K. and Lamb, C.J., 1983, Elicitor induction of messenger RNA activity. Rapid effects of elicitor on phenylalanine ammonia lyase EC-4.3.1.5 and chalcone synthase messenger RNA activities in bean Phaseolus vulgaris cells, Eur. J. Biochem., 130: 131–140.

    Article  PubMed  CAS  Google Scholar 

  71. Ryder, T.B., Cramer, C.L., Bell, J.N., Robbins, M.P., Dixon, R.A. and Lamb, C.J., 1984, Elicitor rapidly induces chalcone synthase messenger RNA in Phaseolus vulgaris cells at the onset of the phytoalexin defense response, Proc. Natl. Acad. Sci. USA., 81: 5724–5728.

    Article  PubMed  CAS  Google Scholar 

  72. Schmelzer, E., Boerner, H., Grisebach, H., Ebel, J. and Hahlbrock, K., 1984, Phytoalexin synthesis in soybean (Glycine max). Similar time courses of messenger RNA induction in hypocotyls infected with a fungal pathogen and in cell cultures treated with fungal elicitor, FEBS Lett., 172: 59–63.

    Article  CAS  Google Scholar 

  73. Ebel, J., Schmidt, W.E. and Loyal, R., 1984, Phytoalexin synthesis in soybean cells: elicitor induction of PAL and chalcone synthase mRNA’s and correlation with phytoalexin accumulation, Arch. Biochem. Biophys., 232: 240–248.

    Article  PubMed  CAS  Google Scholar 

  74. Rowell, J.B., Loegering, W.Q. and Powers, H.R., 1963, Genetic model for physiologic studies of mechanisms governing development of infection type in wheat stem rust, Phytopathology 53: 932–937.

    Google Scholar 

  75. Keen, N.T., 1982, Specific recognition in gene-for-gene host parasite systems, Adv. Plant Pathol., 1: 35–82.

    Google Scholar 

  76. Gabriel, D.W., Ellingboe, A.H. and Rossman, E.C, 1979, Mutations affecting virulence in Phyllosticta maydis, Can. J. Bot., 57: 2639–2643.

    Article  Google Scholar 

  77. Martin, T.J. and Ellingboe, A.H., 1976, Differences between compatible parasite/host genotypes involving the Pm4 locus of wheat and the corresponding genes in Erysiphe graminis f. sp. tritici, Phytopathology, 66: 1435–1438.

    Article  Google Scholar 

  78. Loegering, W.Q. and Harmon, D.L., 1969, Wheat lines near-isogenic for reaction to Puccinia graminis tritici, Phytopathology, 59: 456–459.

    Google Scholar 

  79. Gibson, D.M., Stack, S., Krell, K. and House, J., 1982, A comparison of soybean agglutinin in cultivars resistant and susceptible to Phytophthora megasperma var. sojae (race 1), Plant Physiol., 70: 560–566.

    Article  PubMed  CAS  Google Scholar 

  80. Daly, J.M., 1984, The role of recognition in plant disease, Annu. Rev. Phytopathology, 22: 273–308.

    Article  CAS  Google Scholar 

  81. Cruickshank, I.A.M., 1980, Defenses triggered by the invader: chemical defenses, in: “Plant Disease: An Advanced Treatise”, Vol. V, J.G. Horsfall and E.D. Cowling, eds., pp. 247–267, Academic Press, New York, San Francisco and London.

    Google Scholar 

  82. Kurantz, M.J. and Osman, S.F., 1983, Class distribution, fatty acid composition and elicitor activity of Phytophthora infestans mycelial lipids, Physiol. Plant Pathol., 22: 363–370.

    CAS  Google Scholar 

  83. Davidse, L.C. and Boekeloo, M., 1984, Elicitation and suppression of necrosis in potato leaves by culture filtrate compounds of Phytophthora infestans (Mont.) de Bary, Acta Bot. Neerl., 33: 234.

    Google Scholar 

  84. Heath, M.C, 1981, A generalized concept of host-parasite specificity, Phytopathology, 71: 1121–1123.

    Article  Google Scholar 

  85. Bushneil, W.R. and Rowell, J.B., 1981, Suppressors of defence reactions: a model of roles of specificity, Phytopathology, 71: 1012–1014.

    Article  Google Scholar 

  86. Staskawicz, B.J., Dahlbeck, D. and Keen, N.T., 1984, Cloned avirulence gene of Pseudomonas syringae pathovar glycinea determines race-specific incompatibility of Glycine max, Proc. Natl. Acad. Sci. USA, 81: 6024–6028.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Wit, P.J.G.M. (1986). Elicitation of Active Resistance Mechanisms. In: Bailey, J.A. (eds) Biology and Molecular Biology of Plant-Pathogen Interactions. NATO ASI Series, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82849-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82849-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82851-5

  • Online ISBN: 978-3-642-82849-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics