Skip to main content

Part of the book series: Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology ((1523,volume 15 / 1 / B))

  • 51 Accesses

Abstract

In the past three decades enormous advances have been made in the production of radioactive tracers, especially with regard to their applications in medical and biological studies (Wagner 1968; Wolf and Fowler 1979; Larson and Carasquillo 1984; Silvester 1976; Ruth and Krohn 1981). Instrumentally it is a very long way for a radioactive tracer from its place of origin to delivery for use as a radiopharmaceutical. Between the physics, as source of the bombarding particles, and the physicians, as users of the tracers, the position of radiochemistry is of great importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amphlett C, Vonberg DD et al (1970) The use of cyclotron in chemistry, metalurgy and biology. Butterworths, London

    Google Scholar 

  • Arrol WJ, Chadwick J, Eakins J (1956) The preparation from irradiated uranium of iodine-131 and certain other fission products. Progress in Nucl Energy, Ser III, Process Chemistry 1. Pergamon, London

    Google Scholar 

  • Beaney RP (1984) Positron emission tomography in the study of humane tumors. Seminars in nuchear medicine, vol XIV, no 4 (October), pp 324–341

    Google Scholar 

  • Belkas HP, Perricos DC (1969) 99mTc production based on the extraction with methyl ethyl ketone. Radiochimica Acta 11: 56

    CAS  Google Scholar 

  • Blessing G et al (1984) A multipurpose target system for high-current irradiations. Fifth Int Symp on Radiopharmaceutical Chemistry, July 9–13, Tokyo, p 270

    Google Scholar 

  • Boyd RE (1983) The special position of 99mTc in nuclear medicine. In: Helus F (ed) Radionuclide production, vol II. CRC Press, Florida, pp 126–150

    Google Scholar 

  • Burton G (1970) Cyclotron beam sharing for multiple irradiations. In: Mcllroy RW (ed) Butter-worths, London, p 250

    Google Scholar 

  • Choppin GR, Rydberg J (1980) Nuclear chemistry. Pergamon, Oxford, pp 173–188

    Google Scholar 

  • Clark JC, Silvester DJ (1966) A cyclotron method for the production of 18F. Int J Appl Radiat Isot 17: 151

    Article  PubMed  CAS  Google Scholar 

  • Colonomos M, Parker W (1969) Preparation of carrier-free 99Mo by neabs of (n,gamma) recoil. Radiochimica Acta 12: 163

    CAS  Google Scholar 

  • Cuninghame JG et al. (1976) Large scale production of 123I from a flowing liquid target using the (p,5n) reaction. Int J Appl Radiat Isot 27: 597–603

    Article  CAS  Google Scholar 

  • Ferrieri RA, Wolf AP (1983) The chemistry of positron emitting nucleogenic atoms with regard to preparation of labelled compounds of practical utility. Radiochimica Acta 34: 69–83

    CAS  Google Scholar 

  • Grabmayr P, Nowotny R (1978) Statistical-model based evaluation of reactions producing 123x and 127Xe. Int J Appl Radiat Isot 29: 261–267

    Article  CAS  Google Scholar 

  • Graham D et al (1984) Enriched Xenon-124 for the production of high-purity Iodine-123 using a CP42 cyclotron. J Nucl Med 25: 32

    Google Scholar 

  • Helus F, Mahunka I (1986) Cyclotron production of positron emitters in vertical target system. J Radio Analyt Chem (in press)

    Google Scholar 

  • Helus F, Maier-Borst W (1973) Erhöhte Ausbeute und schnellere, halbautomatische Präparation für in Forschungsreaktoren dargestelltes 18F. Nuklearmedizin 38: 336–339

    Google Scholar 

  • Helus F, Wolber G (1983) Nuclear data; simple calculus with practical examples and optimum irradiation conditions. In: Helus F (ed) Radionuclide production, vol I. CRC Press, Florida

    Google Scholar 

  • Helus F, Sahm U et al (1979) Production of 121I on the Heidelberg compact cyclotron and aspects of 121I dosimetry. Radiochem Radioanal Letters 39: 9–18

    CAS  Google Scholar 

  • Helus F, Maier-Borst W et al. (1980) Remotely controlled target system for the routine production of 81Rb. Radiochem Radioanal Letters 44: 187

    CAS  Google Scholar 

  • Helus F, Gasper H et al. (1985) Cyclotron production of 34mCl for biomedical use. J Radioanal Nucl Chem Letters 94: 149–160

    Article  CAS  Google Scholar 

  • Jones T, Clark JC (1969) A cyclotron produced 81Rb–81mKr generator and its uses in gamma camera studies. Br J Radiol 42: 237

    Article  PubMed  CAS  Google Scholar 

  • Keller KA et al (1973) Q-Values and excitation functions for nuclear reactions. In: Schopper H (ed) Landolt-Börnstein New Series, group I, vol 5. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kondo K et al (1977) Improved target and radiochemistry for production of 123I and 124I. Int J Appl Radiat Isot 28: 765–771

    Article  PubMed  CAS  Google Scholar 

  • Larson SM, Carasquillo JA (1984) Nuclear oncology. In: Freeman LM, Blaufox MO (eds) Seminars in nuclear medicine, vol XIV, no 4 (October). Grune and Stratton, Orlando/Florida, pp 268–276

    Google Scholar 

  • Lebowitz E et al (1975) Thallium-201 for medical use. J Nucl Med 16: 151–155

    PubMed  CAS  Google Scholar 

  • Lieser KH (1980) Einführung in die Kernchemie. Chemie, Weinheim, S 239–261

    Google Scholar 

  • Loch C, Maziere B, Comar D (1980) A new generator for ionic 68Ga. J Nucl Med 21: 171–173

    CAS  Google Scholar 

  • Martin JA (1979) Cyclotrons. IEEE Trans Nucl Sci 26: 2443–2651

    Article  Google Scholar 

  • Nickles RJ, Daube ME, Ruth TJ (1984) An 18O2 target for the production of 18F2. Int J Appl Radiat Isot 35: 117–122

    Article  CAS  Google Scholar 

  • Northcliff LC, Shilling RF (1970) Range and stopping-power tables for heavy ions. In: Nuclear data tables, vol 7. no 3–4 (January 1970 ). Academic, New York London

    Google Scholar 

  • Richards P (1966) Radioactive pharmaceuticals (Proc Symp Oak Ridge), USAEC Div Techn Inform. Extension, Oak Ridge, p 323

    Google Scholar 

  • Root J, Krohn K (eds) (1981) Short-lived radiopharmaceuticals in chemistry and biology. ACS Adv in chemistry series monograph. Am Chem Soc Washington/DC

    Google Scholar 

  • Ruth TH, Adam MJ et al (1984) Radionuclide productiop on the Triumf CP-42: A gas target for sequential production of 18F-F2, and 15O-O2. Fifth Int Symp on Radiopharmaceutical Chemistry, July 9–13, Tokyo, p 282

    Google Scholar 

  • Silvester DJ (1976) Preparation of radiopharmaceuticals and labelled compounds using short-lived radionuclides. In: Newton GWA, Fox BW, Harbottle GR, Heslap JA (eds) Radiochemistry, vol 3. The Chemical Society, Burlington House, London, p 73

    Chapter  Google Scholar 

  • Silvester DJ, Waters S (1979) Second international symposium on radiopharmaceuticals, March 19–22 1979, Seattle

    Google Scholar 

  • Smith EM (1964) Properties, uses, radiochemical purity, and calibration of 99mTc. J Nucl Med 5: 871

    PubMed  CAS  Google Scholar 

  • Stöcklin G (1977) Bromine-77 and Iodine-123 radio-pharmaceuticals. Int J Appl Radiat Isot 28: 131–148

    Article  PubMed  Google Scholar 

  • Szillard L, Chalmers TA (1934) Chemical separation of the radioactive element from its bombarded isotope in the Fermi effect. Nature 134: 462

    Article  Google Scholar 

  • Thakur ML (1983) Radioactive compounds of Gallium and Indium. In: Rayudu GVS (ed) Radio-tracers for medical applications, vol 1. CRC Press, Florida, pp 187–218

    Google Scholar 

  • Tilbury RS, Dahl JR et al (1971) The production of 13N labelled ammonia for medical use. Radiochem Radioanal Letters 8: 317

    CAS  Google Scholar 

  • Wagner HN (ed) (1968) Principles of nuclear medicine. Saunders, Philadelphia

    Google Scholar 

  • Wieland BW et al (1984) Multipurpose target unit for small cyclotrons. Fifth Int Symp on Radio-pharmaceutical Chemistry, July 9–13, Tokyo, p 268

    Google Scholar 

  • Williamson CF et al (1973) Tables of range and stopping powers of chemical elements for charged particles of energy 0.5 to 500 MeV. CEA-R 3042 Report Commissariat d’energy Atomique, Centre d’etudes Nucleaires. Saclay, Essone

    Google Scholar 

  • Wolf AP, Fowler JS (1979) Organic radiopharmaceuticals, recent advances, in radiopharmaceuticals II. Society of Nuclear Medicine, New York, p 73

    Google Scholar 

  • Wolf AP, Redwanly CS (1977) Carbon-11 and radiopharmaceuticals. Int J Appl Radiat Isot 28: 29–48

    Article  PubMed  CAS  Google Scholar 

  • 11C, 13N 15O and 18F target and processing systems. Prospect from Instrument AB Scanditronix. Huysborg, Uppsala/Sweden

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Helus, F. (1988). Target Technique. In: Hundeshangen, H. (eds) Nuklearmedizin / Nuclear Medicine. Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology, vol 15 / 1 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83146-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83146-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83147-8

  • Online ISBN: 978-3-642-83146-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics