Skip to main content

Complexities in Gene Regulation by Promoter Methylation

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 3))

Abstract

The regulation of eukaryotic gene expression presents a multi-faceted problem. It is not limited to the extreme stages of a gene being turned on or switched off. Regulation of gene expression also implies the facility of gene activity to be modulated to various degrees and of promoters to be capable of responding to a variety of internal and environmental stimuli. These stringent requirements can be met by promoter sequences in that they exhibit genetic signals which can be recognized by a considerable number of cellular regulatory proteins. Such promoter signals being vacant or occupied by a specific protein or several proteins confer a certain state of activity upon the promoter and the gene it controls. A multitude of cellular proteins and of promoter signals appear to be involved in the regulation of gene activity. Regulatory significance is not restricted to DNA-protein interactions. Proteinprotein binding may be as important in that promoter-binding proteins might acquire the promoter-congruent conformation by a previous interaction with other proteins. Alternatively, reaching this conformation could be prohibited by linkage to yet other proteins thus obstructing the essential DNA-protein interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker CC, Ziff EB (1981) Promoters and heterogeneous 5’ termini of the messenger RNAs of adenovirus serotype 2. J Mol Biol 149: 189–221

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (1987) Covalent DNA modification and the regulation of Mutator element transposition in maize. Mol Gen Genet 208: 45–51

    Article  CAS  Google Scholar 

  • Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 935–944

    Article  PubMed  CAS  Google Scholar 

  • Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: Purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci USA 80: 5559–5563

    Google Scholar 

  • Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxy-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203: 971–983

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8: 1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Bolden, AH, Ward C, Siedlecki JA, Weissbach A (1984) DNA methylation. Inhibition of de novo and maintenance methylation in vitro by RNA and synthetic polynucleotides. J Biol Chem 259: 12437–12443

    PubMed  CAS  Google Scholar 

  • Cook JL, Lewis AM Jr (1979) Host response to adenovirus 2-transformed hamster embryo cells. Cancer Res 39: 1455–1461

    PubMed  CAS  Google Scholar 

  • Boshart M, Weber F, Jahn G, Dorsch-Häsler K, Fleckenstein B, Schaffner W (1985) Avery strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41: 521–530

    Article  PubMed  CAS  Google Scholar 

  • Busslinger M, Hurst J, Flavell RA (1983) DNA methylation and the regulation of globin gene expression. Cell 34: 197–206

    Article  PubMed  CAS  Google Scholar 

  • Chandler VL, Walbot V (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci USA 83: 1767–1771

    Article  PubMed  CAS  Google Scholar 

  • Chomet PS, Wessler S, Dellaporta SL (1987) Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. EMBO J 6: 295: 302

    Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Nati Acad Sci USA 81: 1991–1995

    Article  CAS  Google Scholar 

  • Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267: 364–366

    Article  PubMed  CAS  Google Scholar 

  • Cook JL, Lewis AM Jr (1979) Host response to adenovirus 2-transformed hamster embryo cells. Cancer Res 39: 1455–1461

    PubMed  CAS  Google Scholar 

  • Cooper DN (1983) Eukaryotic DNA methylation. Hum Genet 64: 315–333

    Article  PubMed  CAS  Google Scholar 

  • Coulondre C, Miller JH, Farabough PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274: 775–780

    Article  PubMed  CAS  Google Scholar 

  • Deumling B (1981) Sequence arrangement of a highly methylated satellite DNA of a plant, Scilla: A tandemly repeated inverted repeat. Proc Natl Acad Sci USA 78: 338–342

    Article  PubMed  CAS  Google Scholar 

  • Dobrzanski P, Hoeveler A, Doerfler W (1988) Inactivation by sequence-specific methylations of adenovims promoters in a cell-free transcription system. J Virol 62: 3941–3946

    PubMed  CAS  Google Scholar 

  • Doerfler W (1968) The fate of the DNA of adenovirus type 12 in baby hamster kidney cells. Proc Nati Acad Sci USA, 60: 636–643

    Article  CAS  Google Scholar 

  • Doerfler W (1969) Nonproductive infection of baby hamster kidney cells (BHK21) with adenovirus type 12. Virology 38: 587–606

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1981) DNA methylation–A regulatory signal in eukaryotic gene expression. J Gen Virol 57: 1–20

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1983) DNA methylation and gene activity. Annu Rev Biochem 52: 93–124

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1984a) DNA methylation: role in viral transformation and persistence. In: Klein G (ed) Advances in Viral Oncology, vol 4. Raven, New York, pp 217–247

    Google Scholar 

  • Doerfler W (1984b) DNA methylation and its functional significance: studies on the adenovirus system. Curr Top Microbiol Immunol 108: 79–98

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W, Kmczek I, Eick D, Vardimon L, Kron B (1982) DNA methylation and gene activity: the adenovims system as a model. Cold Spring Harbor Symp Quant Biol 47: 593–603

    CAS  Google Scholar 

  • Doerfler W, Gahlmann R, Stabel S, Deuring R, Lichtenberg U, Schulz M, Eick D, Leisten R (1983) On the mechnism of recombination between adenoviral and cellular DNAs: The structure of junction sites. Curr Top Microbiol Immunol 109: 193–228

    Article  CAS  Google Scholar 

  • Doerfler W, Langner K-D, Knebel D, Weyer U, Dobrzanski P, Knust-Kron B (1985) Site-specific promoter methylations and gene inactivation. In: Cantoni GL, Razin A (eds) Biochemistry and Biology of DNA Methylation. Progress in Clinical and Biological Research, vol 198. Alan R. Liss, New York, pp 133–155

    Google Scholar 

  • Doerfler W, Spies A, Jessberger R, Lichtenberg U, Zock C, Rosahl T (1987) Recombination of foreign (viral) DNA with the host genome. Studies in vivo and in a cell-free system. In: Rott R, Goebel W (eds) Molecular basis of viral and microbial pathogenesis, 38th Mosbacher Kolloquium, 1987. Springer, Berlin Heidelberg New York Tokyo pp 60–72

    Google Scholar 

  • Doerfler W, Langner K-D, Knebel D, Müller U, Lichtenberg U, Weisshaar B, Renz D (1988a) Eukaryotic gene inactivation by sequence-specific promoter methylation and the release of the transcription block. In: Kahl G (ed) Architecture of eukaryotic genes. Verlag Chemie, Weinheim, pp 409–417

    Google Scholar 

  • Doerfler W, Weisshaar B, Hoeveler A, Knebel D, Müller U, Dobrzanski P, Lichtenberg U, Achten S, Hermann R (1988b) Promoter inhibition by DNA methylation: a reversible signal. Gene 74: 129–133

    Article  PubMed  CAS  Google Scholar 

  • Dynan WS, Tjian R (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316: 774–778

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1968) The fate of the DNA of adenovirus type 12 in baby hamster kidney cells. Proc Nati Acad Sci USA, 60: 636–643

    Article  CAS  Google Scholar 

  • Eick D, Fritz H-J, Doerfler W (1983) Quantitative determination of 5-methylcytosine in DNA by reverse-phase high-performance liquid chromatography. Anal Biochem 135: 165–171

    Article  PubMed  CAS  Google Scholar 

  • Esche H (1982) Viral gene products in adenovirus type 2-transformed hamster cells. J Virol 41: 1076–1082

    PubMed  CAS  Google Scholar 

  • Felsenfeld G, Nickol J, Behe M, McGhee J, Jackson D (1982) Methylation and chromatin structure. Cold Spring Harbor Symp Quant Biol 47: 593–603

    Google Scholar 

  • Gardiner-Gardner M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196: 261–282

    Article  Google Scholar 

  • Gjerset RA, Martin DW, Jr (1982) Presence of a DNA demethylating activity in the nucleus of murine erythroleukemia cells. J Biol Chem 257: 8581–8583

    PubMed  CAS  Google Scholar 

  • Gorman CM (1985) High efficiency gene transfer into mammalian cells. In: Glover DM (ed) DNA cloning, vol. II. IRL Press, Oxford, Washington, pp 143–190

    Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express cloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2: 1044–1051

    PubMed  CAS  Google Scholar 

  • Groudine M, Eisenman R, Weintraub H (1981) Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 292: 311–317

    Article  PubMed  CAS  Google Scholar 

  • Günthert U, Schweiger M, Stupp M, Doerfler W (1976) DNA methylation in adenovirus, adenovirus-transformed cells, and host cells. Proc Nall Acad Sci USA 73: 3923–3927

    Article  Google Scholar 

  • Harland RM (1982) Inheritance of DNA methylation in microinjected eggs of Xenopus laevis. Proc Natl Acad Sci USA 79: 2323–2327

    Article  PubMed  CAS  Google Scholar 

  • Harrington MA, Jones PA, Imagawa M, Kann M (1988) Cytosine methylation does not affect binding of transcription factor Spl. Proc Nall Acad Sci USA 85: 2066–2070

    Article  CAS  Google Scholar 

  • Hearing P, Shenk T (1983) The adenovirus type 5 ElA transcriptional control region contains a duplicate enhancer element. Cell 33: 695–703

    Article  PubMed  CAS  Google Scholar 

  • Hermann R, Hoeveler A, Doerfler W (1989) Sequence-specific methylation in a downstream region of the late E2A promoter of adenovirus type 2 DNA interferes with protein binding. Submitted

    Google Scholar 

  • Hoeveler A, Doerfler W (1987) Specific factors binding to the E2A late promoter region of adenovirus type 2 DNA: No apparent effects of 5’-CCGG-3’ methylation. DNA 6: 449–460

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Westin G, Jiricny J, Schaffner W (1988) Spl transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes and Development 2: 1127–1135

    Article  Google Scholar 

  • Jänner D, Jaenisch R (1985) Retrovirus-induced de novo methylation of flanking host sequences correlates with gene inactivity. Nature 315: 594–597

    Article  Google Scholar 

  • Johanssgn K, Persson,H, Lewis AM, Pettersson U, Tibbetts C, Philipson L (1978) Viral DNA sequences and gene products in hamster cells transformed by adenovirus type 2. J Viroi 27: 628–639

    Google Scholar 

  • Jones N, Shenk T (1979) An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc Nail Acad Sci USA 76: 3665–3669

    Article  CAS  Google Scholar 

  • Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Kaye AM, Winocour E (1967) On the 5-methylcytosine found in the DNA extracted form polyoma virus. J Mol Biol 24: 475–478

    Article  CAS  Google Scholar 

  • Kelley DE, Pollock BA, Atchison ML, Perry RP (1988) The coupling between enhancer activity and hypomethylation of K immunoglobulin genes is developmentally regulated. Mol Cell Biol 8: 930–937

    PubMed  CAS  Google Scholar 

  • Keshet I, Yisraeli J, Cedar H (1985) Effect of regional DNA methylation on gene expression. Proc Nail Acad Sci USA 82: 2560–2564

    Article  CAS  Google Scholar 

  • Keshet I, Lieman-Hurwitz J, Cedar H (1986) DNA methylation affects the formation of active chromatin. Cell 44: 535–543

    Article  PubMed  CAS  Google Scholar 

  • Klimkait T, Doerfler W (1987) E1B functions of type C adenoviruses play a role in the complementation of blocked adenovirus type 12 DNA replication and late gene transcription in hamster cells. Virology 161: 109–120

    Article  PubMed  CAS  Google Scholar 

  • Knebel D, Doerfler W (1986) N6-methyldeoxyadenosine residues at specific sites decrease the activity of the E1A promoter of adenovirus type 12 DNA. J Mol Biol 189: 371–375

    Article  PubMed  CAS  Google Scholar 

  • Knebel D, Lübbert H, Doerfler W (1985) The promoter of the late p10 gene in the insect nuclear polyhedrosis virus Autographs califomica: Activation by viral gene products and sensitivity to DNA methylation. EMBO J 4: 1301–1306

    PubMed  CAS  Google Scholar 

  • Knebel-Mörsdorf D, Achten S, Langner K-D, Rilger R, Fleckenstein B, Doerfler W (1988) Reactivation of the methylation-inhibited late E2A promoter of adenovirus type 2 DNA by a strong enhancer of human cytomegalovirus. Virology 166: 166–174

    Article  PubMed  Google Scholar 

  • Knust B, Briiggemann U, Doerfler W (1989) Reactivation of a methylation-silenced gene in adenovirus-transformed cells by 5-azacytidine, by E1A transactivation or by continuous subcultivation. Submitted

    Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1987) Role of an adenovirus E2 promoter binding factor in El A-mediated coordinate gene control. Proc Natl Acad Sci USA 84: 2180–2184

    Article  PubMed  CAS  Google Scholar 

  • Kruczek I, Doerfler W (1982) The unmethylated state of the promoter/leader and 5’-regions of integrated adenovirus genes correlates with gene expression. EMBO J 1: 409–414

    PubMed  CAS  Google Scholar 

  • Kruczek I, Doerfler W (1983) Expression of the chloramphenicol acetyltransferase gene in mammalian cells under the control of adenovirus type 12 promoters: Effect of promoter methylation on gene expression. Proc Natl Acad Sci USA 80: 7586–7590

    Google Scholar 

  • Kuhlmann I, Doerfler W (1982) Shifts in the extent and patterns of DNA methylation upon explantation and subcultivation of adenovirus type 12-induced hamster tumor cells. Virology 118: 169–180

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann I, Doerfler W (1983) Loss of viral genomes from hamster tumor cells and nonrandom alterations in patterns of methylation of integrated adenovirus type 12 DNA. J Virol 47: 631–636

    PubMed  CAS  Google Scholar 

  • Kuhlmann I, Achten S, Rudolph R, Doerfler W (1982) Tumor induction by human adenovirus type 12 in hamsters: loss of the viral genome from adenovinrs type 12-induced tumor cells is compatible with tumor formation. EMBO J 1: 79–86

    PubMed  CAS  Google Scholar 

  • Kunze R, Starlinger P, Schwartz D (1988) DNA methylation of the maize transposable element Ac interferes with its transcription. Mol Gen Genet 214: 325–327

    Article  CAS  Google Scholar 

  • Langner K-D, Vardimon L, Renz D, Doerfler W (1984) DNA methylations of three 5’ C-C-G-G 3’ sites in the promoter and 5’-region inactivate the E2a gene of adenovims type 2. Proc Natl Acad Sci USA 81: 2950–2954

    Article  PubMed  CAS  Google Scholar 

  • Langner K-D, Weyer U, Doerfler W (1986) Trans effect of the El region of adenoviruses on the expression of a prokaryotic gene in mammalian cells: Resistance to 5’-CCGG-3’ methylation. Proc Natl Acad Sci USA 83: 1598–1602

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg U, Zock C, Doerfler W (1987) Insertion of adenovirus type 12 DNA in the vicinity of an intracistemal A particle genome in Syrian hamster tumor cells. J Virol 61:2719–2726

    PubMed  CAS  Google Scholar 

  • Lichtenberg U, Zock C, Doerfler W (1988) Integration of foreign DNA into mammalian genome can be associated with hypomethylation at site of insertion. Virus Res 11:335–342

    Article  PubMed  CAS  Google Scholar 

  • Lübbert H, Doerfler W (1984) Transcription of overlapping sets of RNAs from the genome of Autographa califomica nuclear polyhedrosis virus: A novel method for mapping RNAs. J Virol 52: 255–265

    PubMed  Google Scholar 

  • Maniatis T, Goodboum S, Fischer JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236: 1237–1245

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harbor Symp Quant Biol 16: 13–47

    PubMed  CAS  Google Scholar 

  • McClintock B (1964) Aspects of gene regulation in maize. Carnegie Inst Wash Year Book 63: 592–602

    Google Scholar 

  • McClintock B (1965) Components of action of the regulators Spm and Ac. Carnegie Inst Wash Year Book 64: 527–536

    Google Scholar 

  • McKnight S, Tjian R (1986) Transcriptional selectivity of viral genes in mammalian cells. Cell 46: 795–805

    Article  PubMed  CAS  Google Scholar 

  • Muller U, Doerfler W (1987) Fixation of “unmethylated or 5’-CCGG-3’ methylated foreign DNA in the genome of hamster cells: gene expression and stability of methylation patterns. J Virol 61: 3710–3720

    PubMed  CAS  Google Scholar 

  • Murray E, Grosveld F (1985) Methylation and ‘y-globin expression. In: Cantoni GL, Razin A (eds) Biochemistry and Biology of DNA Methylation. Alan R. Liss, New York, pp 157–176

    Google Scholar 

  • Nevins JR (1982) Induction of the synthesis of a 70,000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell 29: 913–919

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer GP, Drahovsky D (1986) DNA methyltransferase polypeptides in mouse and human cells. Biochim Biophys Acta 868: 238–242

    PubMed  CAS  Google Scholar 

  • Pollack Y, Stein R, Razin A, Cedar H (1980) Methylation of foreign DNA sequences in eukaryotic cells. Proc Natl Acad Sci USA 77: 6463–6467

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210: 604–610

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Webb C, Szyf M, Yisraeli J, Rosenthal A, Naveh-Many T, Sciaky-Gallili N, Cedar H (1984) Variations in DNA methylation during mouse cell differentiation in vivo and in vitro. Proc Nail Acad Sci USA 81: 2275–2279

    Article  CAS  Google Scholar 

  • Razin A, Feldmesser E, Kafri T, Szyf M (1985) Cell specific DNA methylation patterns; formation and a nucleosome locking model for their function. In: Cantoni GL, Razin A (eds) Biochemistry and Biology of DNA Methylation. Progress in Clinical and Biological Research, vol 198. Alan R. Liss, New York, pp 239–253

    Google Scholar 

  • Razin A, Szyf M, Kafri T, Roll M, Giloh H, Scarpa S, Carotti D, Cantoni GL (1986) Replacement of 5-methylcytosine by cytosine: A possible mechanism for transient DNA demethylation during differentiation. Proc Natl Acad Sci USA 83: 2827–2831

    Article  PubMed  CAS  Google Scholar 

  • Reichel R, Kovesdi I, Nevins JR (1987) Developmental control of a promoter-specific factor that is also regulated by the E1A gene product. Cell 48: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Collick A, Norris ML, Barton SC, Surani MA (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328: 248–251

    Article  PubMed  CAS  Google Scholar 

  • Roy PH, Weissbach A (1975) DNA methylase from HeLa cell nuclei. Nucleic Acids Res 2: 1669–1684

    Article  PubMed  CAS  Google Scholar 

  • Saluz HP, Jiricny J, Jost JP (1986) Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA methylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci USA 83: 7167–7171

    Article  PubMed  CAS  Google Scholar 

  • Schuster AM, Burbank DE, Meister B, Skrdla MP, Meints RH, Hattman S, Swinton D, van Etten JL (1986) Characterization of viruses infecting a eukaryotic Chlorella-like green alga. Virology 150: 170–177

    Article  PubMed  CAS  Google Scholar 

  • Schwartz D, Dennis E (1986) Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation. Mol Gen Genet 205: 476–482

    Article  CAS  Google Scholar 

  • Simon D, Gnmert F, v. Acken U, Döring HP, Kröger H (1978) DNA-methylase from regenerating rat liver: purification and characterisation. Nucleic Acids Res 5: 2153–2167

    CAS  Google Scholar 

  • Smith SS, Hardy TA, Baker DJ (1987) Human DNA (cytosine-5) methyltransferase selectively methylates duplex DNA containing mispairs. Nucleic Acids Res 15: 6899–6916

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of sepcific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Article  PubMed  CAS  Google Scholar 

  • Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Gen 1: 327–341

    CAS  Google Scholar 

  • Stein R, Gruenbaum Y, Pollack Y, Razin A, Cedar H (1982) Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci USA 79: 61–65

    Article  PubMed  CAS  Google Scholar 

  • Supakar PC, Weist D, Zhang D, InamadarN, Zhang XY, Khan R, Ehrlich KC, Ehrlich M (1988) Methylated DNA-binding protein is present in various mammalian cell types. Nucl Acids Res 16: 8029–8043

    CAS  Google Scholar 

  • Sutter D, Doerfler W (1979) Methylation of integrated viral DNA sequences in hamster cells transformed by adenovirus 12. Cold Spring Harbor Symp Quant Biol 44: 565–568

    Google Scholar 

  • Sutter D, Doerfler W (1980) Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc Natl Acad Sci USA 77: 253–256

    Article  PubMed  CAS  Google Scholar 

  • Sutter D, Westphal M, Doerfler W (1978) Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transfomted hamster cells. Cell 14: 569–585

    Article  PubMed  CAS  Google Scholar 

  • Swain JL, Stewart TA, Leder P (1987) Parental legacy determines methylation and expression of an autosomal transgene: A molecular mechanism for parental imprinting. Cell 50: 719–727

    Article  PubMed  CAS  Google Scholar 

  • Thompson JP, Granoff A, Willis DB (1986) Trans-activation of a methylated adenovirus promoter by a frog virus 3 protein. Proc Natl Acad Sci USA 83: 7688–7692

    Article  PubMed  CAS  Google Scholar 

  • Tjia ST, Carstens EB, Doerfler W (1979) Infection of Spodoptera frugiperda cells with Autographa califomica nuclear polyhedrosis virus. II. The viral DNA and the kinetics of its replication. Virology 99: 399–409

    Article  PubMed  CAS  Google Scholar 

  • Van Etten JL, Burbank DE, Schuster AM, Meints RH (1985) Lytic viruses infecting a Chlorella-like alga. Virology 140: 135–143

    Article  PubMed  Google Scholar 

  • Vardimon L, Doerfler W (1981) Patterns of integration of viral DNA in adenovirus type 2-transformed hamster cells. J Mol Biol 147: 227–246

    Article  PubMed  CAS  Google Scholar 

  • Vardimon L, Neumann R, Kuhlmann I, Sutter D, Doerfler W (1980) DNA methylation and viral gene expression in adenovirus transformed and -infected cells. Nucleic Acids Res 8: 2461–2473

    Article  PubMed  CAS  Google Scholar 

  • Vardimon L, Günthert U, Doerfler W (1982a) In vitro methylation of the BsuRI (5’-GGCC-3’) sites in the E2a region of adenovirus type 2 DNA does not affect expression in Xenopus laevis oocytes. Mol Cell Biol 2: 1574–1580

    PubMed  CAS  Google Scholar 

  • Vardimon L, Kressmann A, Cedar H, Maechler M, Doerfler W (1982b) Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc Natl Acad Sci USA 79: 1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Waalwijk C, Flavell RA (1978) MspI, an isoschizomer of HpaII which cleaves both unmethylated and methylated Hpall sites. Nucleic Acids Res 5: 3231–3236

    Article  PubMed  CAS  Google Scholar 

  • Wagner H, Simon D, Werner E, Gelderblom H, Darai C, Flügel RM (1985) Methylation pattern of fish lymphocystis disease virus DNA. J Virol 53: 1005–1007

    PubMed  CAS  Google Scholar 

  • Wang RY-H, Zhang X-Y, Ehrlich M (1986) A human DNA-binding protein is methylation-specific and sequence-specific. Nucleic Acids Res 14: 1599–1614

    Article  PubMed  CAS  Google Scholar 

  • Ward C, Bolden A, Nalin CM, Weissbach A (1987) In vitro methylation of the 5’-flanking regions of the mouse ß-globin gene. J Biol Chem 262: 11057–11063

    PubMed  CAS  Google Scholar 

  • Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus late promoter. Genes and Development 2: 1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Weisshaar B, Langner K-D, Jüttermann R, Müller U, Zock C, Klimkait T, Doerfier W (1988) Reactivation of the methylation-inactivated late E2A promoter of adenovirus type 2 by E1A (13S) functions. J Mol Biol 202: 255–270

    Article  PubMed  CAS  Google Scholar 

  • Wienhues U, Doerfler W (1985) Lack of evidence for methylation of parental and newly synthesized adenovirus type 2 DNA in productive infections. J Virol 56: 320–324

    PubMed  CAS  Google Scholar 

  • Wigler M, Levy D, Perucho M (1981) The somatic replication of DNA methylation. Cell 24: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Willis DB, Granoff A (1980) Frog virus 3 DNA is heavily methylated at CpG sequences. Virology 107: 250–257

    Article  PubMed  CAS  Google Scholar 

  • Willis DB, Goorha R, Granoff A (1984) DNA methyltransferase induced by frog virus 3. J Virol 49: 86–91

    PubMed  CAS  Google Scholar 

  • Willis DB, Goorha R, Chinchar VG (1985) Macromolecular synthesis in cells infected by frog virus 3. Curr Top Microbiol Immunol 116: 77–106

    Article  PubMed  CAS  Google Scholar 

  • Woodcock DM, Crowther PJ, Diver WP (1987) The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem Biophys Res Commun 145: 888–894

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Burbank DE, van Etten JL (1986) Restriction endonuclease activity induced by NC-1A virus infection of a Chlorella-like green alga. Nucleic Acids Res 14: 6017–6030

    Article  PubMed  CAS  Google Scholar 

  • Yisraeli J, Adelstein RS, Melloul D, Nudel U, Yaffe H, Cedar H (1986) Muscle-specific activation of a methylated chimeric actin gene. Cell 46: 409–416

    Article  PubMed  CAS  Google Scholar 

  • Zhang X-Y, Ehrlich KC, Wang R Y-H, Ehrlich M (1986) Effect of site-specific DNA methylation and mutagenesis on recognition by methylated DNA-binding protein from human placenta. Nucleic Acids Res 14: 8387–8397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doerfler, W. (1989). Complexities in Gene Regulation by Promoter Methylation. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83709-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83709-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83711-1

  • Online ISBN: 978-3-642-83709-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics