Skip to main content

Superconducting Field-Effect Devices

  • Conference paper
Superconducting Electronics

Part of the book series: NATO ASI Series ((NATO ASI F,volume 59))

Abstract

Superconducting electronics has evolved primarily as a result of the discovery of Giaever tunneling and the Josephson effects. Originally both phenomena were dealt with in the framework of two superconductors separated by a thin insulating layer. However, the Josephson effect is a much more general phenomenon which reveals the macroscopic quantum character of the superconducting state. Hence, the Josephson effect is found in a large variety of weak link structures such as superconductors connected by a narrow, short metallic contact (called a microbridge), by a normal metal, or by an insulator. In all cases the main features of the Josephson effect are present. The structures differ only with respect to the details of conduction of quasiparticles. The current-voltage characteristic is determined by the Josephson effect acting in parallel to a device-specific quasiparticle current. For various applications the response of either the quasiparticle current or the Josephson current is used. Which device is useful for which application depends on the required impedance, on an often needed nonlinearity and on the maximum supercurrent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.D. Clark, R.J. Prance and A.D.C. Grassie, J. Appl. Phys. 51, 2736 (1980).

    Article  Google Scholar 

  2. A.W. Kleinsasser, Superconductor-silicon heterostructures, in NATO Advanced Study Workshop “Heterostructures on Si: One Step Further with Silicon”, Cargese (Corsica), France, 16–20 May 1988.

    Google Scholar 

  3. R.E. Glover and M.D. Sherrill, Phys. Rev. Lett. 5, 248 (1960)

    Article  Google Scholar 

  4. W. Felsch and R.E. Glover, J. Vac. Sci. Technol. 9, 337 (1971).

    Article  Google Scholar 

  5. H.L. Stadler, Phys. Rev. Lett. 14, 979 (1965).

    Article  Google Scholar 

  6. A. Bardasis, Phys. Rev. B26, 1477 (1982).

    Google Scholar 

  7. M. Yu, M. Strongin and A. Paskin, Phys. Rev. B14, 996 (1976).

    Google Scholar 

  8. E.H. Sondheimer, Phys. Rev. 80, 401 (1950).

    Article  MATH  Google Scholar 

  9. A. Berman and H.J. Juretschke, Appl. Phys. Lett. 18, 417 (1971).

    Article  Google Scholar 

  10. T.H. Geballe, Materials Research Society Symposium on Thin Film Superconducting Materials, Dec.3–5 (1986).

    Google Scholar 

  11. P.A. Badoz, A. Briggs and E. Rosencher, 19th Int. Conf. on Physics of Semiconductors, Warsaw, Poland, 1988, to be published.

    Google Scholar 

  12. A.F. Hebard, A.T. Fiory and R.H, Eick, IEEE Trans. on Magn. MAG 23, 1279 (1987).

    Article  Google Scholar 

  13. A.F. Hebard and A.T. Fiory, Phys. Rev. Lett. 58, 1131 (1987).

    Article  Google Scholar 

  14. H. Fukuyama, H. Ebisawa and S. Maekawa, J. Phys. Soc. Jpn. 53, 3560 (1984).

    Article  Google Scholar 

  15. M. Gurvitch, H.L. Störmer, R.C. Dynes, J.M. Graybeal and D.C. Jacobson, Bull. Amer. Phys. Soc. 31, 438 (1986).

    Google Scholar 

  16. D.D. Berkley, J.H. Kang, J. Maps, J-C. Wan, A.M. Goldman, Thin Solid Films 156, 271 (1988).

    Article  Google Scholar 

  17. A. Kapitulnik, A.D. Kent, T.H. Geballe and J.H. Kaufman, Novel Superconductivity (S.A. Wolf and V.Z. Kresin, Eds.) p.61.

    Google Scholar 

  18. A.D. Kent, Ph.D. Thesis, (Stanford University, 1988).

    Google Scholar 

  19. A. Gilabert, Ann. Phys. 2, 203 (1977).

    Google Scholar 

  20. K.K. Likharev, Sov. Phys. Tech. Letters 2, 12 (1976)

    Google Scholar 

  21. see also K.K. Likharev, Rev. Mod. Phys. 51., 101 (1979).

    Article  Google Scholar 

  22. J. Seto and T. van Duzer, in Low Temp-Phys. LT13, Vol.3, K.D. Timmer-haus, W.J. O’Sullivan and E.F. Hammel, Eds.(New York, Plenum 1974) p.328.

    Google Scholar 

  23. S.M. Sze, Physics of semiconductor devices (Wiley, New York, 1981) p.305.

    Google Scholar 

  24. G.E. Blonder, M. Tinkham and T.M. Klapwijk, Phys. Rev. B25, 4515 (1982).

    Google Scholar 

  25. G.E. Blonder and M. Tinkham, Phys. Rev. B27, 112 (1983)

    Google Scholar 

  26. G. Voss, Thesis, (University of Cologne 1984).

    Google Scholar 

  27. T.Y. Hsiang and J. Clarke, Phys. Rev. B21, 945 (1980).

    Google Scholar 

  28. T.R. Lemberger and Y. Yen, Phys. Rev. B29, 6384 (1984).

    Google Scholar 

  29. J.R. Tucker, and M.J. Feldman, Rev. Mod. Phys. 57, 1055 (1985).

    Article  Google Scholar 

  30. M. McColl, M.F. Millea and A.H. Silver, Appl. Phys. Lett. 23, 263 (1973)

    Article  Google Scholar 

  31. Y. Sugiyama, M. Tacano, S. Sakai and S. Kataoka, IEEE Electron Dev. Lett. EDL-1, 236 (1980).

    Article  Google Scholar 

  32. L.B. Roth, J.A. Roth and P.M. Schwarz, in Future Trends in Superconductive Electronics B.S. Deaver, C.M. Falco, J.H. Harris and S.A. Wolf, Eds., American Institute of Physics, New York, 1978, p.384.

    Google Scholar 

  33. A. Serfaty, J. Aponte and M. Octavio, J. Low Temp. Phys. 63, 23 (1986)

    Article  Google Scholar 

  34. A. Serfaty, J. Aponte and M. Octavio, Erratum J. Low Temp. Phys. 67, 319 (1987).

    Article  Google Scholar 

  35. D.R. Heslinga and T.M. Klapwijk, to be published.

    Google Scholar 

  36. M. Hatano, T. Nishino and U. Kawabe, Appl. Phys. Lett. 50, 52 (1987).

    Article  Google Scholar 

  37. P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964)

    Article  Google Scholar 

  38. J.J. Häuser, H.C.-Theuerer and N.R. Werthamer, Phys. Rev. 136, 637 (1964).

    Article  Google Scholar 

  39. T. Nishino, M. Hatano and U. Kawabe, Jap. J. Appl. Phys. 26Suppl-3, 1543 (1987).

    Google Scholar 

  40. C.L. Huang and T. Van Duzer, Appl. Phys. Lett. 25, 753 (1974).

    Article  Google Scholar 

  41. R.C. Ruby and T. Van Duzer, IEEE Trans. Electron Devices ED-28, 1394 (1981).

    Article  Google Scholar 

  42. T. Nishino, E. Yamada and U. Kawabe, Phys. Rev. B33, 2042 (1986).

    Google Scholar 

  43. T. Nishino, U. Kawabe, E. Yamada, Phys. Rev. B34, 4857 (1986).

    Google Scholar 

  44. T.Y. Hsiang and D.K. Finnemore, Phys. Rev. B22, 154 (1980).

    Google Scholar 

  45. T. Kawakami and H. Takayanagi, Jap. J. Appl. Phys. 26, Suppl-3, 2059 (1987).

    Google Scholar 

  46. K. Kajiyama, Y. Mizushima and S. Sakata, Appl. Phys. Lett. 23, 458 (1973).

    Article  Google Scholar 

  47. V.Z. Kresin, Phys. Rev. B34, 7587 (1986).

    Google Scholar 

  48. A.W. Kleinsasser, T.N. Jackson, G.D. Pettit, H. Schmid, J.M. Woodall and D.P. Kern, Appl. Phys. Lett. 49, 1741 (1986).

    Article  Google Scholar 

  49. Y. Tanaka and M. Tsukada, Solid State Comm. 61, 445 (1987)

    Article  Google Scholar 

  50. Y. Tanaka and M. Tsukada, Phys. Rev. B37, 5087 (1988)

    Google Scholar 

  51. Y. Tanaka and M. Tsukada, Phys. Rev. B37, 5095 (1988).

    Google Scholar 

  52. L.G. Aslamazov and M.V. Fistul’, Pis’ma Zh. Eksp. Teor. Fiz. 30, 233 (1979)

    Google Scholar 

  53. L.G. Aslamazov and M.V. Fistul’, [JETP Lett. 30, 213 (1979)]

    Google Scholar 

  54. L.G. Aslamazov and M.V. Fistul’, Zh. Eksp. Teor. Fiz. 81, 382 (1981)

    Google Scholar 

  55. L.G. Aslamazov and M.V. Fistul’, [Sov. Phys. JETP. 54, 206 (1981)]

    Google Scholar 

  56. L.G. Aslamazov and M.V. Fistul’, Zh. Eksp. Teor. Fiz. 83, 1170 (1982)

    Google Scholar 

  57. L.G. Aslamazov and M.V. Fistul’, [Sov. Phys. JETP, 56, 666 (1982)].

    Google Scholar 

  58. I.M. Lifshitz and V. Ya. Kirpichenkov, Zh. Eksp. Teor. Fiz. 77, 989 (1979)

    Google Scholar 

  59. I.M. Lifshitz and V. Ya. Kirpichenkov, [Sov. Phys. JETP, 50, 499 (1979)].

    Google Scholar 

  60. L.G. Aslamazov and M.V. Fistul’, Zh. Eksp. Teor. Fiz. 86, 1516 (1984)

    Google Scholar 

  61. L.G. Aslamazov and M.V. Fistul’, Sov. Phys. JETP. 59, 887 (1984)].

    Google Scholar 

  62. H. Fukuyama and S. Maekawa, J. Phys. Soc. Japan 55, 1814 (1986)

    Article  Google Scholar 

  63. H. Fukuyama, Proximity effect and Anderson localization in Novel Superconductivity (S.A. Wolf and V.Z. Kresin, Eds.) p.51.

    Google Scholar 

  64. A.W. Kleinsasser, Phys. Rev. B35, 8753 (1987).

    Google Scholar 

  65. T. Nishino, M. Miyake, Y. Harada and U. Kawabe, IEEE Electron Device Lett. EDL-6, 297 (1985).

    Article  Google Scholar 

  66. H. Takayanagi and T. Kawakami, Phys. Rev. Lett. 54, 2449 (1985).

    Article  Google Scholar 

  67. Z. Ivanov, T. Claeson and T. Andersson, Jap. J. Appl. Phys. 26, Suppl-3, 1617 (1987).

    Google Scholar 

  68. V.Z. Kresin, Cryogenics 28, 409 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klapwijk, T.M., Heslinga, D.R., van Huffelen, W.M. (1989). Superconducting Field-Effect Devices. In: Weinstock, H., Nisenoff, M. (eds) Superconducting Electronics. NATO ASI Series, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83885-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83885-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83887-3

  • Online ISBN: 978-3-642-83885-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics