Skip to main content

Charge-Spin Separation and Pairing by Chiral Spin Fluctuations

  • Conference paper
Correlation Effects in Low-Dimensional Electron Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 118))

  • 203 Accesses

Abstract

An effective field-theory for holes moving in a slowly varying antiferromagnetic spin-background is constructed, where the spin degrees of freedom are integrated out within an expansion in generalized Berry-phases. By choosing a spin-quantization axis for the fermions that rotates with the antiferromagnetic order-parameter, a gauge-theory is obtained where the fermions are coupled to a vector gauge-field, whose fluctuations are controlled by the CP 1 model and fermionic contributions. As a consequence of the confining potential produced by the U(1) gauge-fields in (2+1) dimensions, bound states result corresponding to charge-spin separation and pairing. An alternative representation in the laboratory reference frame gives a coupling of spin- and fermionic currents that was first obtained by Shraiman and Siggia for the t-J model. It is also seen in this reference frame that the gauge-fields correspond to chiral fluctuations of the staggered magnetic order-parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987); C.M. Varma, Schmitt-Rink, and E. Abrahams, Solid State Commun. 62, 681 (1987).

    Google Scholar 

  2. N. Nücker, J. Fink, J.C. Fuggle, P.J. Durham, W.M. Temmerman, Phys. Rev. B 37, 5158 (1988).

    Article  ADS  Google Scholar 

  3. G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 68, 353 (1992); Europhys. Lett. 17, 559 (1992); G. Dopf, J. Wagner, P. Dieterich, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 68, 2082 (1992).

    Google Scholar 

  4. Y. Endoh et al., Phys. Rev. B 37, 7443 (1988).

    Article  ADS  Google Scholar 

  5. F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  ADS  Google Scholar 

  6. E. Dagotto, Int. J. Mod. Phys. B 5, 77 (1991).

    Article  ADS  Google Scholar 

  7. P.A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. S-W. Cheong et al., Phys. Rev. Lett. 67, 1791 (1991); T.E. Mason et al., Phys. Rev. Lett. 68, 1414 (1992).

    Google Scholar 

  9. R.Jackiw, Int. J. Mod. Phys. A 3, 285 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Angelucci and G. Jug, Int. Jour. Mod. Phys. B 3, 1069 (1989).

    Article  ADS  Google Scholar 

  11. B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett. 61, 467 (1988); ibid. 62, 1564 (1989); Phys. Rev. B41, 350 (1990); ibid. 42, 2485 (1990).

    Google Scholar 

  12. P. Prelovsek, Phys. Lett. A 126, 287 (1988); J. Zaanen and A.M. Olés, Phys. Rev. B37, 4923 (1988); A. Muramatsu, R. Zeyher, and D. Schmeltzer, Europhys. Lett. 7, 473 (1988).

    Google Scholar 

  13. C. Kübert and A. Muramatsu, Phys. Rev. B 47, 787 (1993).

    Article  ADS  Google Scholar 

  14. X.G. Wen, Phys. Rev. B 39, 7223 (1989).

    Article  ADS  Google Scholar 

  15. R. Rajaraman, Solitons and instantons ( North-Holland, Amsterdam, 1987 ).

    MATH  Google Scholar 

  16. A. D’Adda, M. Löscher, and P. Di Vecchia, Nucl. Phys. B 146, 63 (1978).

    Article  ADS  Google Scholar 

  17. S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989).

    Article  ADS  Google Scholar 

  18. N. Nagaosa and P.A. Lee, Phys. Rev. Lett. 64, 2450 (1990).

    Article  ADS  Google Scholar 

  19. M. Reizer, Phys. Rev. B39, 1602 (1989); 40, 11571 (1989).

    Google Scholar 

  20. J. Rossat-Mignod et al., Physica C 185–189, 86 (1991).

    Google Scholar 

  21. T. Dombre and N. Read, Phys. Rev. B38 (1988) 7181; E. Fradkin and M. Stone, Phys. Rev. B38 (1988) 7215.

    Google Scholar 

  22. F.D.M. Haldane, Phys. Lett. 93A, 464 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Takigawa et al., Phys. Rev. B 43, 247 (1991).

    Article  ADS  Google Scholar 

  24. B. Bucher et al., Phys. Rev. Lett. 70, 2012 (1993).

    Article  ADS  Google Scholar 

  25. T. Ito, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 70, 3995 (1993).

    Article  ADS  Google Scholar 

  26. A.P. Litvinchuk, C. Thomsen, and M. Cardona, Sol. St. Comm. 83, 343 (1992); A.P. Litvinchuk et al., Zeit. f. Phys. B 92, 9 (1993).

    Google Scholar 

  27. C.C. Homes et al., Phys. Rev. Lett. 71, 1645 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kübert, C., Muramatsu, A. (1994). Charge-Spin Separation and Pairing by Chiral Spin Fluctuations. In: Okiji, A., Kawakami, N. (eds) Correlation Effects in Low-Dimensional Electron Systems. Springer Series in Solid-State Sciences, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85129-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85129-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85131-5

  • Online ISBN: 978-3-642-85129-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics