Skip to main content

Immunocytochemical Studies on Some Brain Regions in a Rat Model of Incomplete Cerebral Ischemia. Relationship to Behavior and Aging

  • Conference paper
Cerebral Ischemia and Calcium

Abstract

Several pathogenetic mechanisms have been proposed to explain the peculiar histological features of brain ischemia, i.e., the selective neuronal death and the so-called maturation phenomenon [17] — the extension of the lesions during the reperfusion.

On leave from Department of Neurology, University of Debrecen, Hungary; stipendary of Alexander von Humboldt Foundation, Bonn, FRG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati LF, Fuxe K, Zini I et al. (1985) Effects of lesions and ganglioside GM1 treatment on striatal polyamine levels and nigral DA neurons. A role of putrescine in the neurotropic activity of gangliosides. Acta Physiol Scand 124:277–285

    Article  PubMed  Google Scholar 

  2. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 5:1369–1374

    Article  Google Scholar 

  3. Bondy SC, Walker CH (1986) Polyamines contribute to calcium-stimulated release of aspartate from brain particulate fractions. Brain Res 371:96–100

    Article  PubMed  CAS  Google Scholar 

  4. Brown AW, Brierley JB (1968) The nature, distribution and earliest stages of anoxic-ischaemic nerve cell damage in the rat brain as defined by the optical microscope. Br J Exp Pathol 1:87–106

    Google Scholar 

  5. Brown AW, Brierley JB (1973) The earliest alterations in rat neurons and astrocytes after anoxia-ischaemia. Acta Neuropathol (Berl) 23:9–22

    Article  CAS  Google Scholar 

  6. Bures J, Buresová; O, Huston I (1983) Techniques and basic experiments for the study of brain and behavior. Elsevier, Amsterdam New York, pp 77–133

    Google Scholar 

  7. Cintra A, Fuxe K, Agnati LF et al. (1987) Evidence for the existence of ornithine decarboxylase-immunoreactive neurons in the rat brain. Neurosci Lett 76:269–274

    Article  PubMed  CAS  Google Scholar 

  8. Dahl D, Bignami A (1976) Immunogenic properties of the glial fibrillary acidic protein. Brain Res 116:150–157

    Article  PubMed  CAS  Google Scholar 

  9. Dempsey RJ, Roy MW, Meyer K, Tai HH, Olson JW (1985) Polyamine and prostaglandin markers in focal cerebral ischemia. Neurosurgery 17:635–640

    Article  PubMed  CAS  Google Scholar 

  10. Elde R, Hökfelt T (1978) Distribution of hypothalamic hormones and other peptides in the brain. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 5. Raven, New York, pp 1–33

    Google Scholar 

  11. Francis A, Pulsinelli W (1982) The response of GABAergic and cholinergic neurons to transient cerebral ischemia. Brain Res 243:271–278

    Article  PubMed  CAS  Google Scholar 

  12. Garcia JH, Lossinsky AS, Kauffman FC, Conger KA (1978) Neuronal ischemic injury: light microscopy, ultrastructure and biochemistry. Acta Neuropathol (Berl) 43:85–95

    Article  CAS  Google Scholar 

  13. Ginsberg MD, Graham DI, Path FRC, Busto R (1985) Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ann Neurol 4:470–481

    Article  Google Scholar 

  14. Globus MY-T, Ginsberg MD, Harik SI, Busto R, Dietrich WD (1987) Role of dopamine in ischemic striatal injury: metabolic evidence. Neurology 37:1712–1719

    Article  PubMed  CAS  Google Scholar 

  15. Haegele KD, Alken RG, Grove J, Schechter PJ, Koch-Weser J (1981) Kinetics of α-difluoro-methylornithine: an irreversible inhibitor of ornithine decarboxylase. Clin Pharmacol Ther 2:210–217

    Article  Google Scholar 

  16. Harik SI, Yoshida S, Busto R, Ginsberg MD (1986) Monoamine neurotransmitters in diffuse reversible forebrain ischemia and early recirculation: increased dopaminergic activity. Neurology 36:971–976

    Article  PubMed  CAS  Google Scholar 

  17. Ito U, Spatz M, Walker JT, Klatzo I (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 32:209–223

    Article  CAS  Google Scholar 

  18. Johansen FF, Zimmer J, Diemer NH (1987) Early loss of somatostatin neurons in dentate hilus after cerebral ischemia in the rat precedes CA-1 pyramidal cell loss. Acta Neuropathol (Berl) 73:110–114

    Article  CAS  Google Scholar 

  19. Kirino T, Tamura A, Sano K (1985) Selective vulnerability of the hippocampus to ischemia — reversible and irreversible types of ischemic cell damage. Prog Brain Res 63:39–58

    Article  PubMed  CAS  Google Scholar 

  20. Ljungberg T, Ungerstedt U (1976) Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Exp Neurol 53:585–600

    Article  PubMed  CAS  Google Scholar 

  21. Marshall JF, Gotthelf T (1979) Sensory inattention in rats with 6-hydroxydopamine induced degeneration of ascending dopaminergic neurons: apomorphine-induced reversal of deficits. Exp Neurol 65:398–411

    Article  PubMed  CAS  Google Scholar 

  22. Markey K, Kondo A, Schenkmann L, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from a clonal chromocytoma cell line. Mol Pharmacol 17:79–85

    PubMed  CAS  Google Scholar 

  23. Németh Gy, Mayer G, Hoyer S (1989) A new psychometric test of attention-related behavior in rats. Its validity in the aging process. Arch Gerontol Geriatr 8:26–39

    Article  Google Scholar 

  24. Ouimet CC, Miller P, Hemmings HC Jr, Walaas SI, Greengard P (1984) DARPP-32, a dopamine-and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innvervated brain regions. III. Immunocytochemical localization. J Neurosci 4:111–124

    PubMed  CAS  Google Scholar 

  25. Paschen W, Schmidt-Kastner R, Djuricic B, Meese C, Linn F, Hossmann K-A (1987) Polyamine changes in reversible cerebral ischemia. J Neurochem 49:35–37

    Article  PubMed  CAS  Google Scholar 

  26. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, Sidney

    Google Scholar 

  27. Persson L (1982) Antibodies to ornithine decarboxylase, immunochemical crossreactivity. Acta Chem Scand 36:685–688

    Article  CAS  Google Scholar 

  28. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 5:491–498

    Article  Google Scholar 

  29. Pulsinelli WA (1985) Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 63:29–37

    Article  PubMed  CAS  Google Scholar 

  30. Pulsinelli WA (1985) Deafferentation of the hippocampus protects CA1 pyramidal cells against ischemic injury. Stroke 16:144

    Google Scholar 

  31. Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220:536–537

    Article  PubMed  CAS  Google Scholar 

  32. Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-p-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852

    Article  PubMed  CAS  Google Scholar 

  33. Smith M-L, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl) 64:319–332

    Article  CAS  Google Scholar 

  34. Tupper DE, Wallace RB (1980) Utility of the neurological examination in rats. Acta Neurobiol Exp 40:999–1003

    CAS  Google Scholar 

  35. Yoshimine T, Morimoto K, Brengman JM, Homburger HA, Mogami H, Yanagihara T (1985) Immunohistochemical investigation of cerebral ischemia during recirculation. J Neurosurg 63:922–928

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Németh, G. et al. (1989). Immunocytochemical Studies on Some Brain Regions in a Rat Model of Incomplete Cerebral Ischemia. Relationship to Behavior and Aging. In: Hartmann, A., Kuschinsky, W. (eds) Cerebral Ischemia and Calcium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85863-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85863-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85865-9

  • Online ISBN: 978-3-642-85863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics