Skip to main content

Formation and Structure

  • Chapter
Foams

Part of the book series: Foams ((APPLIED PHYS,volume 10))

Abstract

Foams, being colloidal systems, can be prepared either by dispersion or by condensation, which is also known as agglomeration. In the dispersion methods, the future disperse (or discontinuous) phase is initially available as a large volume of gas, and this is then comminuted and mixed with the dispersion medium (often designated as the continuous phase), which, in a foam, is a liquid. In the condensation methods, the future dispersed material originally is present as a solute, that is, as molecules dissolved in the liquid. When these molecules combine to larger aggregates (i.e., bubbles), foams may be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davidson, J. F., and B. O. G. Schüler. Trans. Inst. Chem. Eng. 38:144 (1960).

    Google Scholar 

  2. Maier, C. G. U.S. Bur. Mines Bull. 260 (1927).

    Google Scholar 

  3. Okun, D., and J. K. Baars. Proc. Intern. Congr. Surface Active Subst. 4th Congress, Bruxelles (1964) 2:57 (1967).

    Google Scholar 

  4. Kovalski, W. von, and A. Wacker. Ber. 63:1698 (1930).

    Google Scholar 

  5. Guyer, A., and E. Peterhans. Helv. Chim. Acta 26:1099 (1943).

    Article  Google Scholar 

  6. Krevelen, D. W. van, and P. J. Hoftijzer. Chenu Eng. Progr. 46:29 (1950).

    Google Scholar 

  7. Datta, R. L., D. H. Napier, and D. M. Newitt, Trans. Inst. Client. Eng. 28:14 (1950).

    Google Scholar 

  8. Coppock, P. D., and G. T. Meiklejohn. Trans. Inst. Chenu Eng. 29:75 (1951).

    Google Scholar 

  9. Bikerman, J. J. J. Appl. Chenu (London) 18:266 (1968).

    Article  Google Scholar 

  10. Achorn, G. B., and J. L. Schwab. Science 107:377 (1948).

    Article  ADS  Google Scholar 

  11. Bragg, L., and J. F. Nye. Proc. Roy. Soc. (London) 190A:474 (1947).

    ADS  Google Scholar 

  12. Smith, C. S. J.Appl. Phys. 20:631 (1949).

    Article  ADS  Google Scholar 

  13. Neppiras, E. A. J. Acoust. Soc. Am. 46:587 (1969).

    Article  ADS  Google Scholar 

  14. Pattle, R. E. Trans. Inst. Chenu Eng. 28:32 (1950).

    Google Scholar 

  15. Valentin, F. H. H. Absorption in Gas-Liquid Dispersions. London: Spon Ltd. (1967).

    Google Scholar 

  16. Remy, H., and W. Seemann. Kolloid-Z. 72:3 (1935).

    Article  Google Scholar 

  17. Ramakrishnan, S., R. Kumar, and N. R. Kuloor. Chenu Eng. Sci. 24:731 (1969).

    Article  Google Scholar 

  18. Eversole, W. G., G. H. Wagner, and E. Stackhouse. Ind. Eng. Chenu 33: 1459 (1941).

    Article  Google Scholar 

  19. Kupferberg, A., and G. J. Jameson. Trans. Inst. Chenu Eng. 47:T241 (1969).

    Google Scholar 

  20. Kippenhan, C., and D. Tegeler. A.I.Ch.E.J. 16:314 (1970).

    Article  Google Scholar 

  21. Potter, O. E. Chenu Eng. Sci. 24:1733 (1969).

    Article  Google Scholar 

  22. Ostwald, W., and A. Siehr. Kolloid-Z. 76:33 (1936).

    Article  Google Scholar 

  23. Satyanarayan, A., R. Kumar, and N. R. Kuloor. Chenu Eng. Sci. 24: 749 (1969).

    Article  Google Scholar 

  24. Bikerman, J. J. Physical Surfaces. New York: Academic Press. (1970), p. 70.

    Google Scholar 

  25. Rietema, K., and S. P. P. Ottengraf. Trans. Inst. Chenu Eng. 48:T54 (1970).

    Google Scholar 

  26. Melikyan, R. A. Zh. Prikl. Khinu 29: 1792 (1956)

    Google Scholar 

  27. Melikyan, R. A. Zh. Prikl. Khinu 42:2733 (1969).

    Google Scholar 

  28. Baxter, R. T., and A. E. Wraith. Chenu Eng. Sci. 25:1244 (1970).

    Article  Google Scholar 

  29. Calderbank, P. H. Chenu Eng. {London} No. 212:CE209 (1967).

    Google Scholar 

  30. Bowonder, B., and R. Kumar. Chenu Eng. Sci. 25:25 (1970).

    Article  Google Scholar 

  31. Hofer, M. S., and E: Rubin. Ind. Eng. Chem., Fundamentals. 8:483 (1969).

    Article  Google Scholar 

  32. Lee, J. C., and D. L. Meyrick. Trans. Inst. Chenu Eng. 48:T37 (1970).

    Google Scholar 

  33. Gilberg, D., and R. A. Anderson. J. Appl. Phys. 19:127 (1948).

    Article  ADS  Google Scholar 

  34. Melsens, Compt. Rend. 20:1658 (1845).

    Google Scholar 

  35. Fry, J. F., and R. J. French. J. Appl. Chenu (London) 1:425, 429 (1951).

    Google Scholar 

  36. Plateau, J. Mém Acad. Roy. Sci. Belg. 37 (1869), 11th ser.

    Google Scholar 

  37. Peterson, H. B., R. R. Neill, and E. J. Jablonski. Ind. Eng. Chenu 48:2031 (1956).

    Article  Google Scholar 

  38. Weatherford, W. D. J. Colloid Interface Sci. 34:197 (1970).

    Article  Google Scholar 

  39. Hirth, J. P., G. M. Pound, and G. R. St. Pierre. Met. Trans. 1:939 (1970).

    Article  Google Scholar 

  40. Florschuetz, L. W., C. L. Henry, and A. Rashid Khan. Intern. J. Heat Mass Transfer 12:1465 (1969).

    Article  Google Scholar 

  41. Krause, A., and K. Kapitanczyk. Kolloid-Z. 80:273 (1937).

    Article  Google Scholar 

  42. Kapitanczyk, K. Chenu Abstr. 44:7119 (1950).

    Google Scholar 

  43. Start, J. F., L. Seglin, and B. R. Franko-Filipasik. U.S. 3 423 330 (1969).

    Google Scholar 

  44. Gernez, D. Ann. Chinu Phys. [5] 4:335 (1875).

    MathSciNet  Google Scholar 

  45. Dean, R. B. J. Appl. Phys. 15:446 (1944).

    Article  ADS  Google Scholar 

  46. Larson, R. F. Ind. Eng. Chem. 37:1004 (1945).

    Article  Google Scholar 

  47. Sernas, V., and F. C. Hooper. Intern. J. Heat Mass Transfer 12:1627 (1969).

    Article  Google Scholar 

  48. Jakob, M. Mech. Eng. 58:643 (1936).

    Google Scholar 

  49. Cole, R. A.I.Ch.E.J. 13:779 (1967).

    Article  Google Scholar 

  50. Bewilogua, L., R. Knöner, and H. Vinzelberg. Cryogenics 10:69 (1970).

    Article  ADS  Google Scholar 

  51. Wark, I. W. J. Phys. Chem. 37:623 (1933).

    Article  Google Scholar 

  52. Gunther, F. C. Trans. Am. Soc. Mech. Eng. 73:115 (1951).

    Google Scholar 

  53. Leaf, W. B., et al. Am. Ry. Eng. Assoc. 45. Bull. 441:58 (1943).

    Google Scholar 

  54. Cooper, M. G., and A. J. P. Lloyd. Intern. J. Heat Mass Transfer 12:895 (1969).

    Article  Google Scholar 

  55. Jawurek, H. H. Intern. J. Heat Mass Transfer 12:843 (1969).

    Article  Google Scholar 

  56. Kotake, S. Intern. J. Heat Mass Transfer 13:1595 (1970).

    Article  Google Scholar 

  57. Plateau, J. Mém. Acad. Roy. Sci. Belg. 33 (1861), 6th ser.

    Google Scholar 

  58. Plateau, J. Mém. Acad. Roy. Sci. Belg. 33 (1861), 5th ser.

    Google Scholar 

  59. Desch, C. H. Rec. Trav. Chim. 42:882 (1923).

    Google Scholar 

  60. Manegold, E. Schaum. Heidelberg: Strassenbau, Chemie und Technik, (1953), p. 98.

    Google Scholar 

  61. Efremov, G. I., and I. A. Vakhrushev. Izv. Vysshikh Uchebn. Zavedenii neft i gas 6:79 (1968).

    Google Scholar 

  62. Schwarz, H. W. Rec. Trav. Chim. 84:771 (1965).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bikerman, J.J. (1973). Formation and Structure. In: Foams. Foams, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86734-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86734-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86736-1

  • Online ISBN: 978-3-642-86734-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics