Skip to main content

Production and stability of silicon-doped heterofullerenes

  • Conference paper
The European Physical Journal D

Abstract

Silicon-carbon binary clusters with various mean compositions are generated in a laser vaporization source from targets processed as mixtures of graphite and silicon powders. Their size distribution is first analyzed by time-of-flight mass spectroscopy, which shows the stability of carbon fullerenes doped with silicon atoms in substitutional sites. Further investigations on the level of silicon doping are carried out by means of the laser-induced fragmentation of selected sizes. The photoproduct size distributions give evidence for at least nine silicon atoms substituted into still stable fuilerene networks. The synthesis of heterofullerenes is mainly assisted by the nucleation mechanisms from Si—C mixed atomic vapors. Just as in the case of externally doped fullerene precursors, the laser-induced annealing of stoichiometric silicon-carbide clusters appears as an alternative route to produce heterofullerenes in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Kroto et al Nature 318, 162 (1985)

    Google Scholar 

  2. W. Krätshmer et al.: Nature 347, 354 (1990)

    Google Scholar 

  3. J.R. Heath et al J. Am. Chem. Soc. 107, 7779 (1985)

    Google Scholar 

  4. Y. Chai et al J. Chem, Phys. 95, 7564 (1991)

    Google Scholar 

  5. L.M. Roth et al J. Am. Chem. Soc. 113, 6298 (1991)

    Google Scholar 

  6. Y. Huang, B.S. Freiser: J. Am. Chem. Soc. 113, 9418 (1991)

    Article  Google Scholar 

  7. D.E. Clemmer et al Nature 372, 248 (1994)

    Google Scholar 

  8. W. Branz et al.: J. Chem. Phys, 109, 3425 (1998)

    Google Scholar 

  9. U. Zimmermann et al Phys. Rev. Lett. 72, 3542 (1994)

    Google Scholar 

  10. T. Guo, C. Jin, R.E. Smalley: J. Chem. Phys. 95, 4948 (1991)

    Google Scholar 

  11. H.-J. Muhl:, R. Nesper, B. Schnyder, R. Kbtz: Chem. Phys, Lett. 249, 399 (1996)

    ADS  Google Scholar 

  12. T. Pradeep, V. Vijayakrishnan, A.K. Santra, C.N.R. Rao: J. Phys. Chem. 95, 10 564 (1991)

    Article  Google Scholar 

  13. Christian, Z. Wan, S. Anderson: J. Phys. Chem. 96, 10 597 (1992)

    Google Scholar 

  14. R. Yu et al J. Phys. Chem. 99, 1818 (1995)

    Google Scholar 

  15. J.C. Hummelen et al.: Science 269, 1554 (1995)

    Google Scholar 

  16. F. Chen, D. Singh, S.A. ‚Jansen: J. Phys. Chem. 97, 10 958 (1993)

    Google Scholar 

  17. N. Kurita, K. Kobayashi, H. Kumahora, K. Tago: Phys. Rev. B 48, 4850 (1993)

    Article  ADS  Google Scholar 

  18. K. Esfarjani, K. Ohno, Y. Kawazoe: Plays. Rev. B 50, 17 830 (1994)

    Google Scholar 

  19. S.-H. Wang et al J. Phys. Chem. 99, 6801 (1995)

    Google Scholar 

  20. w.Andreoni et al J. Am. Chem. Soc. 118, 11 335 (1996)

    Google Scholar 

  21. T. Pichler et al.: Phys. Rev. Lett. 78, 4249 (1996)

    Google Scholar 

  22. S. Haffner et al Eur. Phys.J. B 1, 11 (1998)

    Google Scholar 

  23. N. Kurita et al Chem, Phys. Lett. 198, 95 (1992)

    Google Scholar 

  24. w. Andreoni, F. Gygi, M. Parinello: Chem, Phys. Lett. 190, 159 (1992)

    Article  ADS  Google Scholar 

  25. T. Kimura, T. Sugai, H. Shin hara: Chem. Phys. Lett. 256, 269 (1996)

    Article  ADS  Google Scholar 

  26. J.L. Fye, M.F. Jarrold: J. Phys. Chem. 101, 1836 (1997)

    Article  Google Scholar 

  27. M. Pellarin et al Chem. Phys, Lett. 277, 96 (1197)

    Google Scholar 

  28. C. Ray et al Phys.Rev. Lett. 80, 5365 (1998)

    Google Scholar 

  29. J.L. Vialle et al.: Rev. Sci. Instrum. 68, 2312 (1997)

    Article  ADS  Google Scholar 

  30. E.A. Rohlfing, D.M. Cox, A. Kaldor: J. Chem, Phys. 81, 3322 (1984)

    Article  ADS  Google Scholar 

  31. F. Tast et al Phys. Rev. Lett. 77, 3529 (1996)

    Google Scholar 

  32. P.P. Radi et al.: J. Chem. Phys. 88, 2809 (1987)

    Google Scholar 

  33. S.C. O’Brien et at.: J. Chem. Phys. 88, 220 (1988)

    Article  ADS  Google Scholar 

  34. P. Sheier et al Phys, Rev. Lett. 77, 2654 (1996)

    Google Scholar 

  35. P.W. Fowler, D.E. Manolopoulos: An. Atlas of Fullerenes ( Clarendon, Oxford 1995 )

    Google Scholar 

  36. D. Babic, N. Trinajstic: Chem. Phys. Lett. 237, 239 (1995)

    Article  ADS  Google Scholar 

  37. G. Seifert et al Chem. Phys. Lett. 268, 352 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this paper

Cite this paper

Pellarin, M. et al. (1999). Production and stability of silicon-doped heterofullerenes. In: Châtelain, A., Bonard, JM. (eds) The European Physical Journal D. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88188-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88188-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88190-9

  • Online ISBN: 978-3-642-88188-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics