Skip to main content

Random Kinetic Aggregation

  • Conference paper
Physics of Finely Divided Matter

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 5))

Abstract

Colloidal aggregation and other stochastic aggregation and growth phenomena produce structures that behave qualitatively differently from ordinary bulk matter in many respects. This pedagogical review is intended to account for this new behavior and to survey the ways of making these new structures. A “fractal” spatial scale invariance property allows much of this behavior to be predicted. Special scaling properties of phenomena confined to such structures, such as electrical conductivity, are noted. Complementary phenomena, such as diffusing, hydrodynamic or electric fields in the space around the structure, are treated on a common basis using the geometric notion of the intersection of two fractals. The notion is extended to treat the thermodynamic interactions of such structures. When a certain “opacity” condition is met, these tenuous structures interact with their environment as though they were solid objects. A method of determining the fractal dimension D using displacement of a polymer solution by the fractal is described. Then two basic mechanisms producing these structures are treated. First, the reaction rates governing colloidal aggregation are discussed. This leads to a solvable schematic model. Corrections to the model due to excluded-volume and polydispersity effects are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. A. Weitz and M. Oliveria, Phys. Rev. Lett. 52 1433 (1984)

    Article  ADS  Google Scholar 

  2. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Fransisco (1982)

    MATH  Google Scholar 

  3. S. G. Whittington, Advances in Chem. Phys. 51 1 (1982)

    Article  Google Scholar 

  4. J. W. Essam, Repts. Progress. Phys. 43 833 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  5. F. Family and D. P. Landau, eds. Kinetics of Aggregation and Gelation North--Holland (1984)

    Google Scholar 

  6. M. Kolb, “Renormalization Group for Aggregation”, Orsay preprint

    Google Scholar 

  7. T. Halsey, private communication

    Google Scholar 

  8. S. Chandrasekhar, Rev. Mod. Phys. 15 1 (1943)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. S. Alexander and R. Orbach J. Phys. (Paris) Lett. 43 L625 (1982)

    Google Scholar 

  10. T. A. Witten and Y. Kantor, Phys. Rev. B. 30 4093 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Havlin, Z. Djordvic, I. Majid, H. E. Stanley, and G. H. Weiss, Phys. Rev. Lett. 53 178 (1984)

    Article  ADS  Google Scholar 

  12. F. Family and A. Coniglio, J. Phys. A. 17 L285 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Meakin, I. Majid, S. Havlin, and H. E. Stanley, J. Phys. A, 17 L975 (1984)

    Article  ADS  Google Scholar 

  14. M. E. Cates, Phys. Rev. Lett. 53 926 (1984)

    Article  ADS  Google Scholar 

  15. P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell (1980)

    Google Scholar 

  16. T. A. Witten, and J. J. Prentis, J. Chem. Phys. 77 4247 (1982)

    Article  ADS  Google Scholar 

  17. J.-F. Joanny, L. Leibler, and R. Ball, J. Chem. Phys. 81 4640 (1984)

    Article  ADS  Google Scholar 

  18. P. G. De Gennes, private communication

    Google Scholar 

  19. T. Witten, to be published

    Google Scholar 

  20. P. Meakin, and T. A. Witten, Phys. Rev. A. 28 2985 (1983)

    Article  ADS  Google Scholar 

  21. P. Grassberger, Physics Letters A 97 227 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Meakin, H. E. Stanley, T. A. Witten, and A. Coniglio, to be published

    Google Scholar 

  23. L. de Arcangelis, S. Redner and A. Coniglio, to be published

    Google Scholar 

  24. R. Rammal, elsewhere in these Proceedings

    Google Scholar 

  25. M. V. von Smoluchowski, Phys. Z. 17 557 (1916)

    ADS  Google Scholar 

  26. B. Derrida and L. de Seze, J. de Physique 43 475 (1982)

    Article  Google Scholar 

  27. G. Parisi and N. Sourlas, Phys. Rev. Lett. 46 871 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Eden, Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability 4 223 (1961)

    MathSciNet  Google Scholar 

  29. R. Jullien and R. Botet, “Scaling Properties of the Surface of the Eden Model,” to be published

    Google Scholar 

  30. T. A. Witten and L. M. Sander, Phys. Rev. B. 27 5686 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Binder, ed. Monte Carlo Methods in Statistical Physics, Springer, Heidelberg, (1979)

    Google Scholar 

  32. R. Jullien and M. Kolb, J. Phys. A 17 L639 (1984)

    Article  ADS  Google Scholar 

  33. D. A. Weitz, T. A. Witten, J. S. Huang, R. C. Ball, and F. Leyvraz, Bull. Am. Phys. Soc 30 268 (1985), and to be published

    Google Scholar 

  34. R. C. Ball and T. A. Witten, J. Stat. Phys. 36 873 (1984)

    Article  ADS  Google Scholar 

  35. M. Daoud and J-F. Joanny, J. de Physique 42 1359 (1981)

    Article  Google Scholar 

  36. I. Thompson and R. C. Ball, to be published

    Google Scholar 

  37. P. J. Flory, Principles of Polymer Chemistry, Cornell, Ithaca NY (1971)

    Google Scholar 

  38. T. C. Lubensky and J. Isaacson, J. de Physique, 42 175 (1981)

    Article  MathSciNet  Google Scholar 

  39. D. N. Sutherland and I. Goodarz-Nia, Chem. Eng. Sci. 26 2071 (1971);

    Article  Google Scholar 

  40. J. Phys. A. 17 L75 (1984)

    Article  ADS  Google Scholar 

  41. R. Jullien, J. Phys. A. 17 L77 (1984)

    MathSciNet  Google Scholar 

  42. P. Meakin, Phys. Rev. Letts. 51 1119 (1983);

    Article  ADS  Google Scholar 

  43. M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51 1123 (1983)

    Article  ADS  Google Scholar 

  44. D. Bensimon, B. Shraiman and S. Liang, Physics Letters, 102A 238 (1984)

    ADS  MathSciNet  Google Scholar 

  45. R. C. Ball and T. A. Witten, Phys. Rev. A. rapid commun., 29 2966 (1984)

    ADS  Google Scholar 

  46. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981)

    Article  ADS  Google Scholar 

  47. P. Meakin, Phys. Rev. A. 27 1495 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  48. L. Patterson, Phys. Rev. Lett. 52 1625 (1984)

    Article  ADS  Google Scholar 

  49. P. G. Saffman and G. I. Taylor, Proc. Roy. Soc. London A245 312 (1958)

    ADS  MathSciNet  Google Scholar 

  50. J. S. Langer and H. Mueller-Krumbhaar, Acta Mettall. 2 1081, 1689 (1978);

    Google Scholar 

  51. H. Mueller-Krumbhaar and J. S. Langer, Acta Mettal. 2 1697 (1978)

    Article  Google Scholar 

  52. R. Brady and R. C. Ball, Nature 309 225 (1984)

    Article  ADS  Google Scholar 

  53. L. Niemeyer, L. Pietronero and H. J. Wiesmann, Phys. Rev. Lett. 52 1033 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  54. P. Meakin, Phys. Rev. A. 27 2616 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  55. P. G. de Gennes, Macromolecules 14, 1637 (1981)

    Article  ADS  Google Scholar 

  56. T. A. Witten, Proc. Workshop on Dynamics of Macromolecules, P. Pincus and S. Edwards eds., J. Polymer Sci., Polymer Symposia, to be published, (1985)

    Google Scholar 

  57. Z. Racz and T. Vicsek, Phys. Rev. Lett. 51 2382 (1983)

    Article  ADS  Google Scholar 

  58. P. Meakin, Phys. Rev. B 30 4207 (1984)

    Article  ADS  Google Scholar 

  59. M. Daoud and J.-P. Cotton, J. de Physique, 43 531 (1982)

    Article  Google Scholar 

  60. R. C. Ball and R. Brady, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Witten, T.A. (1985). Random Kinetic Aggregation. In: Boccara, N., Daoud, M. (eds) Physics of Finely Divided Matter. Springer Proceedings in Physics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93301-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93301-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-93303-5

  • Online ISBN: 978-3-642-93301-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics