Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 66))

Abstract

Many chemical and biological phenomena are modeled as systems of coupled limit cycle oscillators. These models are inherently complex in that they involve often large numbers of coupled ordinary and partial differential equations. To understand any of the behavior of these systems, simplifying assumptions are made. One such assumption is that the individual oscillators are nearly identical and weakly coupled. In this case only the phase of the individual oscillators matters and so the coupled system becomes a smaller system on a k-torus. This technique has been applied to discrete systems [1–3] as well as to reaction-diffusion equation [4,5]. Many interesting aspects of chemical and biological systems can be understood by studying the simple phase-models [6–8]. For example, see the paper by Kopell in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Levinson, “Small periodic perturbations of an autonomous system with a stable orbit”, Ann. Math. 52 (1950), 727–738.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. B. Ermentrout and N. Kopell, “Frequency plateaus in a chain of weakly coupled oscillators, I.”, SIAM J. Math. Anal. 15 (1984), 215–237.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Neu, “Coupled chemical oscillators”, SIAM J. Appl. Math. 37 (1979), 307–315.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Neu, “Nonlinear oscillators in discrete and continuous systems”, Ph.D. Thesis, Cal. Tech (1978), Chapter 5.

    Google Scholar 

  5. P. Hagan, “Target patterns in reaction-diffusion systems”, Adv. Appl. Math. 2 (1981), 400–416.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Daan and C. Berde, “Two coupled oscillators: Simulations of the circadian pacemaker in mammalian activity rhythms”, J. Theor. Biol. 70 (1978), 297–314.

    Article  MathSciNet  Google Scholar 

  7. A. H. Cohen, P. J. Holmes and R. J. Rand, “The nature of coupling between segmental oscillators of the lamprey spinal generator”, J. Math. Biol. 13 (1982), 345–369.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Kopell and G. B. Ermentrout, “Symmetry and phaselocking in a chain of weakly coupled oscillators, preprint.

    Google Scholar 

  9. K. Bar-Eli, “On the stability of coupled chemical oscillators”, Physica 14D (1985), 242–252.

    MathSciNet  Google Scholar 

  10. I. Schreiber and M. Marek, “Strange attractors in coupled reaction-diffusion cells”, Physica 15D (1982), 258–272.

    MathSciNet  Google Scholar 

  11. G. B. Ermentrout, S. P. Hastings and W. C. Troy, “Large amplitude stationary waves in an excitable lateral-inhibitory medium”, SIAM J. Appl. Math. 44 (1984), 1133–1149.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. S. Hagan, “Spiral waves in reaction-diffusion equations”, SIAM J. Appl. Math. 42 (1983), 762–786.

    Article  MathSciNet  Google Scholar 

  13. G. B. Ermentrout, “Stable small-amplitude solutions in reaction-diffusion systems”, Quart. Appl. Math., April (1981), 61–86.

    Google Scholar 

  14. G. B. Ermentrout, D. Aronson and N. Kopell, (in preparation).

    Google Scholar 

  15. V. Torre, “A theory of synchronization of two heart pace-maker cells”, J. Theor. Biol. 61 (1976), 55–71.

    Article  MathSciNet  Google Scholar 

  16. N. Kopell and L. N. Howard, “Plane wave solutions to reaction-diffusion equations”, Stud. Appl. Math. 52 (1973), 291–328.

    MATH  MathSciNet  Google Scholar 

  17. N. Kopell, “Target pattern solutions to reaction-diffusion equations in the presence of imparities”, Adv. Appl. Math. 2 (1981), 389–399.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Meinhart, personal communication.

    Google Scholar 

  19. A. J. Winfree, The Geometry of Biological Time, Springer-Verlag, New York (1980), 328–329.

    MATH  Google Scholar 

  20. G. B. Ermentrout and W. C. Troy, “Phaselocking in a reaction-diffusion svstem with a linear frequency gradient”, preprint (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ermentrout, B. (1986). Losing Amplitude and Saving Phase. In: Othmer, H.G. (eds) Nonlinear Oscillations in Biology and Chemistry. Lecture Notes in Biomathematics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93318-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93318-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16481-4

  • Online ISBN: 978-3-642-93318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics