Skip to main content

Modeling Epidemics of Root Diseases and Development of Simulators

  • Chapter
Experimental Techniques in Plant Disease Epidemiology

Abstract

Plant pathologists are engaging in more quantitative research as the need is increasing to understand complex pathosystems rather than to simply describe them qualitatively. This quantitative research has been facilitated by the availability of computers, other electronic technology, and computer software. The generation of large data bases for plant pathosystems has led to an increase in modeling efforts and to a heightened awareness of the importance of such efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bald JG (1970) Measurements of host reaction to soilborne inoculum. In: Toussoun TA, Bega RY, Nelson PE (eds) Root disease and soilborne pathogens. Univ CA Press, Berkeley

    Google Scholar 

  • Bloomberg WJ (1979) A model of damping-off and root rot of Douglas-fir seedlings caused by Fusarium oxysporum. Phytopathology 69: 74–81

    Article  Google Scholar 

  • Bloomberg WJ (1983) A ground survey method for estimating losses caused by Phellinus weirii root rot. III. Simulation of disease spread and impact. Can For Serv Pacific For Res Center Rpt BC-R-7, pp 25

    Google Scholar 

  • Chi CC, Childers WR, Hanson EW (1964) Penetration and subsequent development of three Fusarium species in alfalfa and red clover. Phytopathology 54: 434–437

    Google Scholar 

  • de Wit CT, Goudriaan J (1974) Simulation of ecological processes. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, pp 195

    Google Scholar 

  • de Wit CT, Rabbinge R (1979) Systems analysis and dynamic simulation. EPPO Bull 9: 149–153

    Article  Google Scholar 

  • Drury RE, Baker R, Griffin GJ (1983) Calculating the dimensions of the rhizosphere.Phytopathology 73: 1351–1354

    Google Scholar 

  • Ferris RS (1981) Calculating rhizosphere size. Phytopathology 71: 1229–1231

    Google Scholar 

  • Gilligan CA (1983) Modeling of soilborne pathogens. Annu Rev Phytopathol 17: 431–460

    Google Scholar 

  • Gilligan CA (1985) Construction of temporal models. III. Disease progress of soilborne pathogens. In: Gilligan CA (ed) Advances in plant pathology, vol 3, Mathematical modeling of crop disease. Academic Press, London, pp 255

    Google Scholar 

  • Gregory PH (1948) The multiple-infection transformation. Ann Appl Biol 35: 412–417

    Article  PubMed  CAS  Google Scholar 

  • Griffin GJ (1969) Fusarium oxysporum and Aspergillusflavus spore germination in the rhizosphere of peanut. Phytopathology 59: 1214–1218

    PubMed  CAS  Google Scholar 

  • Gutierrez AP, Falcon LA, Loew W, Leipzig PA (1975) An analysis of cotton production in California: a model for Acala cotton and the effects of defoliators on its yield. Environ Entomol 4: 125–136

    Google Scholar 

  • Gutierrez AP, Wang Y, Jones RE (1979) Systems analysis applied to crop protection. EPPO Bull 9: 133–148

    Article  Google Scholar 

  • Gutierrez AP, De Yay JE, Pullman GS, Friebertshauser FE (1983) A model of verticillium wilt in 9–95

    Google Scholar 

  • Jeffers JNR (1978) An introduction to systems analysis: with ecological applications. Arnold, London

    Google Scholar 

  • Jones FGW, Kempton RA, Perry JN (1978) Computer simulation and population models for cyst-nematodes ( Heteroderidae: Nematoda). Nematropica 8: 36–56

    Google Scholar 

  • Klir GJ (1969) An approach to general systems theory. Van Nostrand, New York

    Google Scholar 

  • Kranz J (1977) Die Entwicklung von Pflanzenschutzsystemen. Mitt Biol Bundesanst Land Forstwirtsch Berl Dahlem 175: 85–100

    Google Scholar 

  • Kranz J (1978) Comparative anatomy of epidemics. In: Horsfall J G, Cowling E B (eds) Plant disease vol 2 Academic Press, London Kranz J, Hau B (1980) Systems analysis in epidemiology. Annu Rev Phytopathol 18: 67–83

    Google Scholar 

  • Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrika 35: 213–245

    Google Scholar 

  • Naylor TH, Bolintfy JL, Burdick DS, Chu K (1966) Computer simulation techniques. Wiley, New York

    Google Scholar 

  • Overton WS (1977) A strategy of model construction. In: Hall CAS, Day JW Jr (eds). Ecosystem modeling in theory and practice. Wiley, New York

    Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Reynolds KM, Bloomberg WJ (1982) Estimating the probability of intertree root contract in second-growth Douglas-fir. Can J For Res 12: 493–498

    Article  Google Scholar 

  • Reynolds KM, Benson DM, Bruck RI ( 1985 a) The epidemiology of Phytophthora root rot of Fraser fir: Estimates of rhizosphere width and inoculum efficiency. Phytopathology 75: 1010–1014

    Google Scholar 

  • Reynolds KM, Benson DM, Bruck RI (1985 b) The epidemiology of Phytophthora root rot of Fraser fir: root colonization and inoculum production. Phytopathology 75: 1004–1009

    Google Scholar 

  • Reynolds KM, Gold HJ, Bruck RI, Benson DM, Campbell CL (1986) Simulation of the spread of Phytophthora cinnamomi causing a root rot of Fraser fir in nursery beds. Phytopathology 76: 1190–1201

    Article  Google Scholar 

  • Shoemaker CA (1980) The role of systems analysis in integrated pest management. In: Huffaker CB (ed) New technology of pest control. Wiley, New York

    Google Scholar 

  • Skellam JG (1972) Some philosophical aspects of mathematical modelling in empirical science with special reference to ecology. In: Jeffers JNR (ed) Mathematical models in ecology. Blackwell, Oxford

    Google Scholar 

  • Teng PS (1981) Validation of computer models of plant disease epidemics: Z Pflanzenkr

    Google Scholar 

  • Pflanzenschutz 88: 49–63 Teng PS (1985) A comparison of simulation approaches to epidemic modeling. Annu Rev Phytopathol 23: 351–379

    Google Scholar 

  • Wallis GW (1976) Growth characteristics of Phellinus (Poria) weiriim soil and on root and other surfaces. Can J For Res 6: 229–232

    Article  Google Scholar 

  • Watt KEF (1966) The nature of system analysis. In: Watt KEF (ed) Systems analysis in ecology. Academic Press, London

    Google Scholar 

  • Zadoks JC (1971) Systems analysis and the dynamics of epidemics. Phytopathology 61: 600 - 610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Heidelberg

About this chapter

Cite this chapter

Campbell, C.L., Reynolds, K.M., Madden, L.V. (1988). Modeling Epidemics of Root Diseases and Development of Simulators. In: Kranz, J., Rotem, J. (eds) Experimental Techniques in Plant Disease Epidemiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95534-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95534-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95536-5

  • Online ISBN: 978-3-642-95534-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics