Skip to main content

Advances in Design Automation Techniques for Digital-Microfluidic Biochips

  • Chapter
  • First Online:
Formal Modeling and Verification of Cyber-Physical Systems

Abstract

Due to their emergence as an efficient platform for pointof-care clinical diagnostics, digital-microfluidic biochips (DMFBs) have received considerable attention in recent years. They combine electronics with biology, and they integrate various bioassay operations, such as sample preparation, analysis, separation, and detection. In this chapter, we first present an overview of digital-microfluidic biochips. We next describe emerging computer-aided design (CAD) tools for the automated synthesis and optimization of biochips from bioassay protocols. The chapter includes solutions for fluidic-operation scheduling, module placement, droplet routing, and pin-constrained chip design. We also show how recent advances in the integration of sensors into a DMFB can be exploited to provide cyberphysical system adaptation based on feedback-driven control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schulte, T., Bardell, R. L., Weigl, B. H.: Microfluidic technologies in clinical diagnostics. Clinica Chimica Acta 321, 1–10 (2002)

    Article  Google Scholar 

  2. Guiseppi-Elie, A., Brahim, S., Slaughter, G., Ward, K. R.: Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sensors Journal 5, 345–355 (2005)

    Article  Google Scholar 

  3. Fair, R. B.: Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and Nanofluidics 3, 245–281 (2007)

    Article  Google Scholar 

  4. Berthier, J.: Micro-drops and digital microfluidics. William Andrew (2012)

    Google Scholar 

  5. Srinivasan, V., Pamula, V. K., Fair, R. B.: Droplet-based microfluidic lab-on-a-chip for glucose detection. Analytica Chimica Acta 507, 145–150 (2004)

    Article  Google Scholar 

  6. Chen, X., Cui, D., Liu, C., Li, H., Chen, J.: Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Analytica chimica acta 584, 237–243 (2007)

    Google Scholar 

  7. Chang, Y.-H., Lee, G.-W., Huang, F.-C., Chen, Y.-Y., Lin, J.-L.: Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomedical Microdevices 8, 215–225 (2006)

    Article  Google Scholar 

  8. Luan, L., Evans, R. D., Jokerst, N. M., Fair, R. B.: Integrated optical sensor in a digital microfluidic platform. IEEE Sensors Journal 8, 628–635 (2008)

    Article  Google Scholar 

  9. Sista, R., Hua, Z., Thwar, P., Sudarsan, A., Srinivasan V., Eckhardt, A., Pollack, M., Pamula, V.: Development of a digital microfluidic platform for point of care testing. Lab on a Chip 8, 2091–2104 (2008)

    Article  Google Scholar 

  10. Hu, K., Hsu, B.-N., Madison, A., Chakrabarty, K., Fair, R. B.: Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips. Proc. DATE, 559-564 (2013)

    Google Scholar 

  11. Cho, S. K., Moon, H., Kim, C.-J.: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital. microfluidic circuits. IEEE Journal of Microelectromechanical Systems 12, 70–80 (2003)

    Article  Google Scholar 

  12. Mugele, F., Baret, J.-C.: Electrowetting: from basics to applications. Journal of Physics: Condensed Matter 17, R705 (2005)

    Google Scholar 

  13. Berthier, J., Clementz, Ph., Raccurt, O., Jary, D., Claustre, P., Peponnet, C., Fouil- let, Y.: Computer aided design of an EWOD microdevice. Sensors and Actuators A: Physical 127, 283–294 (2006)

    Article  Google Scholar 

  14. Su, F., Chakrabarty, K.: Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. Proc. DAC, 825-830 (2005)

    Google Scholar 

  15. Baranyi, J., Csernus, O., Beczner, J.: Error analysis in predictive modelling demonstrated on mould data. International Journal of Food Microbiology 170, 78–82 (2014)

    Article  Google Scholar 

  16. Su, F., Chakrabarty, K.: Architectural-level synthesis of digital microfluidics-based biochips. Proc. ICCAD, 223-228 (2004)

    Google Scholar 

  17. Ricketts, A., Irick, K., Vijaykrishnan, N., Irwin, M.: Priority scheduling in digital microfluidics-based biochips. Proc. DATE, 329-334 (2006)

    Google Scholar 

  18. Zhao, Y., Xu, T., Chakrabarty, K.: Integrated control-path design and error recovery in the synthesis of digital microfluidic lab-on-chip. ACM J. Emerg. Technol. Comput. Syst 6, 11 (2010)

    Google Scholar 

  19. Zhao, Y., Xu, T., Chakrabarty, K.: Online synthesis for error recovery in digital microfluidic biochips with operation variability. Proc. DTIP, 53-58 (2012)

    Google Scholar 

  20. Chakrabarty, K., Fair, R.B., Zeng, J.: Design Tools for Digital Microfluidic Biochips: Toward Functional Diversification and More Than Moore. IEEE Trans. on CAD of Integrated Circuits and Systems 29, 1001–1017 (2010)

    Article  Google Scholar 

  21. Ho, T.-Y., Chakrabarty, K., Fair, R.B., Pop, P.: Digital microfluidic biochips: Recent research and emerging challenges. Proc. CODES+ISSS, 335-343 (2011)

    Google Scholar 

  22. Yuh, P.-H., Yang, C.-L., Chang, Y.-W.: Placement of Defect-Tolerant Digital Microfluidic Biochips Using the T-tree Formulation. ACM J. Emerg. Technol. Comput. Syst 3, 13:1-32 (2007)

    Google Scholar 

  23. Su, F., Chakrabarty, K.: Module placement for fault-tolerant microfluidics-based biochips. ACM Trans. Design Automation of Electronic Systems 11, 682–710 (2006)

    Article  Google Scholar 

  24. Maftei, E., Pop, P., Madsen, J.: Tabu Search-Based Synthesis of Dynamically Reconfigurable Digital Microfluidic Biochips. Proc. CASES, 195-203 (2009)

    Google Scholar 

  25. Fair, R. B. et al.: Electrowetting-based on-chip sample processing for integrated microfluidics. Proc. IEDM, 32.5.1-32.5.4 (2003).

    Google Scholar 

  26. Cho, M., Pan, D.Z.: A High-Performance Droplet Routing Algorithm for Digital Microfluidic Biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 27, 1714–1724 (2008)

    Article  Google Scholar 

  27. Bohringer, K.F.: Modeling and Controlling Parallel Tasks in Droplet-Based Microfluidic Systems. IEEE Trans. on CAD of Integrated Circuits and Systems 25, 334–344 (2006)

    Article  Google Scholar 

  28. Xu, T., Chakrabarty, K.: Integrated Droplet Routing and Defect Tolerance in the Synthesis of Digital Microfluidic Biochips. ACM J. Emerg. Technol. Comput. Syst 4, 11:1-23 (2008)

    Google Scholar 

  29. Yuh, P.-H., Yang, C.-L., Chang, Y.-W.: BioRoute: A Network-Flow-Based Routing Algorithm for the Synthesis of Digital Microfluidic Biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 27, 1928–1941 (2008)

    Article  Google Scholar 

  30. Keszocze, O., Wille, R., Drechsler, R.: Exact routing for digital microfluidic biochips with temporary blockages. Proc. ICCAD, 405-410 (2014)

    Google Scholar 

  31. Zhao, Y., Chakrabarty, K.: Cross-Contamination Avoidance for Droplet Routing in Digital Microfluidic Biochips. Proc. DATE,1290-1295 (2009)

    Google Scholar 

  32. Huang, T.-W., Lin, C.-H., Ho, T.-Y.: A Contamination Aware Droplet Routing Algorithm for Digital Microfluidic Biochips. Proc. ICCAD, 151-156 (2009)

    Google Scholar 

  33. Zhao, Y., Chakrabarty, K.: Synchronization of Washing Operations with Droplet Routing for Cross-Contamination Avoidance in Digital Microfluidic Biochips. Proc. DAC, 635-640 (2010)

    Google Scholar 

  34. Lin, C.C.-Y, Chang, Y.-W.: Cross-Contamination Aware Design Methodology for Pin-Constrained Digital Microfluidic Biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 30, 817–828 (2011)

    Article  Google Scholar 

  35. Su, F., Chakrabarty, K., Fair, R.: Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE Trans. on CAD of Integrated Circuits and Systems 25, 211–223 (2006)

    Article  Google Scholar 

  36. Pollack, M., Shenderov, A., Fair, R.: Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002)

    Article  Google Scholar 

  37. Gong, J., Kim, C.: Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board. Journal of Microelectromechanical Systems 17, 257–264 (2008)

    Article  Google Scholar 

  38. Huang, T., Lin, Y., Chang, J., Ho, T.: Chip-level design and optimization for digital microfluidic biochips. Proc. MWSCAS, 1-4 (2011)

    Google Scholar 

  39. Xu, T., Chakrabarty, K.: Broadcast electrode-addressing for pin-constrained multifunctional digital microfluidic biochips. Proc. DAC, 173-178 (2008)

    Google Scholar 

  40. Gross, J., Yellen, J.: Graph theory and its applications. CRC press (2005)

    Google Scholar 

  41. Xu, T., Chakrabarty, K.: Droplet-trace-based array partitioning and a pin assignment algorithm for the automated design of digital microfluidic biochips. Proc. CODES+ISSS, 112-117 (2006)

    Google Scholar 

  42. Lin, C., Chang, Y.: ILP-based pin-count aware design methodology for microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 29, 1315–1327 (2010)

    Article  Google Scholar 

  43. Huang, T., Su, H., Ho, T.: Progressive network-flow based power-aware broadcast addressing for pin-constrained digital microfluidic biochips. Proc. DAC, 741-746 (2011)

    Google Scholar 

  44. Alpert, C., Mehta, D., Sapatnekar, S.: Handbook of algorithms for physical design automation. CRC press (2008)

    Google Scholar 

  45. Huang, T., Ho, T.: A two-stage ILP-based droplet routing algorithm for pin- constrained digital microfluidic biochips. Proc. DAC, 201-208 (2010)

    Google Scholar 

  46. Huang, T., Yeh, S., Ho, T.: A network-flow based pin-count aware routing algorithm for broadcast electrode-addressing EWOD chips. Proc. ICCAD, 425-431 (2010)

    Google Scholar 

  47. Jokerst, N. and others: Progress in chip-scale photonic sensing. IEEE Trans. Biomed. Circuits Syst 3, 202–211 (2009)

    Article  Google Scholar 

  48. Shin, Y.-J., Lee, J.-B.: Machine vision for digital microfluidics. Review of Scientific Instruments 81, 014 302:1-7 (2010)

    Google Scholar 

  49. Alistar, M., Pop, P., Madsen, J.: Online synthesis for error recovery in digital microfluidic biochips with operation variability. Proc. DTIP, 25-27 (2012)

    Google Scholar 

  50. Luo, Y., Chakrabarty, K., Ho, T.-Y.: Error Recovery in Cyberphysical Digital- Microfluidic Biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 32, 59–72 (2013)

    Article  Google Scholar 

  51. Hadwen, B., Broder, G., Morganti, D., Jacobs, A., Brown, C.: Programmable large area digital microfluidic array with integrated droplet sensing for bioassays. Lab Chip 12, 33053313 (2012)

    Article  Google Scholar 

  52. Luo, Y., Chakrabarty, K., Ho, T.-Y.: Biochemistry Synthesis on a Cyberphysical Digital Microfluidics Platform Under Completion-Time Uncertainties in Fluidic Operations. IEEE Trans. on CAD of Integrated Circuits and Systems 33, 903–916 (2014)

    Article  Google Scholar 

  53. Huang, L., Koo, B., Kim, C. J.: Evaluation of anodic Ta2O5 as the dielectric layer for EWOD devices. Proc. IEEE MEMS, 428-431 (2012)

    Google Scholar 

  54. Luo, Y., Chakrabarty, K., Ho, T.-Y.: Real-time error recovery in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE Trans. on CAD of Integrated Circuits and Systems 32, 1839–1852 (2013)

    Article  Google Scholar 

  55. Hu, K., Hsu, B.-N., Madison, A., Chakrabarty, K., Fair, R.: Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips. Proc. DATE, 559-564 (2013)

    Google Scholar 

  56. Ibrahim, M., Chakrabarty, K.: Error recovery in digital microfluidics for personalized medicine. Proc. DATE, (2015) [accepted for publication]

    Google Scholar 

  57. http://microfluidics.ee.duke.edu/Published_Videos/2013_DATE/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Ibrahim, M., Li, Z., Chakrabarty, K. (2015). Advances in Design Automation Techniques for Digital-Microfluidic Biochips. In: Drechsler, R., Kühne, U. (eds) Formal Modeling and Verification of Cyber-Physical Systems. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-09994-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-09994-7_7

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-09993-0

  • Online ISBN: 978-3-658-09994-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics