Skip to main content

Optical Techniques to Measure Genetic Instability in Cell and Tissue Cultures

  • Chapter
Somaclonal Variation in Crop Improvement I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 11))

  • 337 Accesses

Abstract

Biotechnology has great potential in forestry, particularly in plantation forestry, where rapid reforestation is financially and ecologically imperative, and especially in situations where the desirable species grows well in an exotic environment but does not reproduce there. The potential benefits of biotechnology include: rapid multiplication of selected genotypes; cloning; somatic hybridization; increased disease, insect, and herbicide resistance; germplasm preservation; triploid production; rapid haploid and pure line production; somatic embryogenesis; and somaclonal variation (see Berlyn et al. 1986a; Bajaj 1986). However, there are potential problems which include: low yield of somatic embryos, especially in conifers; inability to regenerate almost all forest trees from protoplasts, which prevents application of somatic hybridization; delayed expression of undesirable traits; morphological incompatibility of plant organs in genetically engineered plants; out-of-phase development, that alters timing mechanisms such as bud flushing, dormancy induction, initiation of earlywood and latewood formation and reproductive development; and genetic instability of regenerated plantlets and consequent inability to regenerate true to type. As has been documented, high levels of auxins employed in plant tissue culture for root initiation and organogenesis can cause DNA content polymorphisms (Renfroe and Berlyn 1985; Berlyn et al. 1987). These effects are probably deleterious, especially in conifers, but the long-term significance of these changes is not well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajaj YPS (ed) (1986) Biotechnology in agriculture and forestry. vol 1. Trees I. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bartels PH (1961) Fluorescence microscopy. Leitz, New York

    Google Scholar 

  • Bartels PH (1966) Sensitivity and evaluation of microspectrophotometric and microinterferometric measurements. In: Wied GL (ed) Introduction to quantitative cytochemistry, vol 1. Academic Press, New York London. pp 93–105

    Google Scholar 

  • Berlyn GP (1967) The structure of germination in Pinus lambertiana. Bull 71, Yale Univ School For Environ Stud, New Haven, Conn

    Google Scholar 

  • Berlyn GP (1969) Microspectrophotometric investigations of free space in plant cell walls. Am J Bot 56:498–506

    Article  Google Scholar 

  • Berlyn GP, Beck RC (1989) Cytophysical and cytochemical analysis of cell wall structure in relation to microbial and enzymatic degradation. In: Iqbal M (ed) KA Choudhury Memorial Volume. Aligarh Muslim University. Aligarh India (in press)

    Google Scholar 

  • Berlyn GP, Cecich RA (1976) Optical techniques for measuring DNA quantity. In: Miksche JP (ed) Modern methods in forest genetics. Springer, Berlin Heidelberg New York, pp 1–18

    Google Scholar 

  • Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. Iowa State Univ Press, Ames

    Google Scholar 

  • Berlyn G P, Passof PC (1965) Cytoplasmic fibrils in proembryo formation in Pinus. Can J Bot 43 :175–177

    Article  Google Scholar 

  • Berlyn GP, Dhillon SS, Miksche JP (1979) Feulgen cytophotometry of pine nuclei 11. Effect ot pectinase used in cell separation. Stain Technol 54:201–204

    PubMed  CAS  Google Scholar 

  • Berlyn GP, Beck RC. Renfoe MH (1986a) Tissue culture and the genetic improvement of conifers: problems and possibilities. Tree Physiol 1:224–240

    Article  Google Scholar 

  • Berlyn GP, Berlyn MK. Beck RC (1986b) A comparison of internal standards for plant cytophotometry. Stain Technol 61:297–302

    CAS  Google Scholar 

  • Berlyn GP, Anoruo AO, Beck RC, Cheng J (1987) DNA content polymorphism and tissue culture regeneration in Caribbean pine. Can J Bot 65:954–961

    Article  CAS  Google Scholar 

  • Bowen CC (1956) Freezing by liquid carbon dioxide in making slides permanent. Stain Technol 1: 7–90

    Google Scholar 

  • Chaleff RS (1981) Genetics of higher plants: applications of cell culture. Cambridge Univ Press, New York, 184 pp.

    Google Scholar 

  • Chaleff RS (1983) The isolation of agronomically useful mutants from plant cell cultures. Science 219:676–682

    Article  PubMed  CAS  Google Scholar 

  • Chaleff RS, Keil R L (1981) Genetic and physiological variability among cultured cells and regenerated plants of Nicotiana tabacum. Mol Gen Genet 181:254–258

    Article  Google Scholar 

  • Coleman AW, Maguire MJ. Coleman JR (1981) Mithramycin and 4’-6-damidino-2-phenylindole (DAPI) — staining for fluorescence microspectrophotometric measurements of DNA in nuclei, plastids. and virus particles. J Histochem Cytochem 29:959–968

    Article  PubMed  CAS  Google Scholar 

  • Colowick SP, Kaplan NO (1955) Methods in enzymology. vol 1. Academic Press, New York London

    Google Scholar 

  • Conger AD, Fairchild LM (1953) A quick-freeze method for making smear slide permanent. Stain Technol 28 :281–283

    PubMed  CAS  Google Scholar 

  • D’Amato F (1977) Cytogenetics of differentiation in tissue and cell culture. In: Reinert J, Bajaj Y PS (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New York, po 343–357

    Google Scholar 

  • Dhillon SS, Berlyn GP, Miksche JP (1977) Requirement of an internal standard for microspectrophotometric measurements of DNA. Am J Bot 64:117–121

    Article  CAS  Google Scholar 

  • Dhillon SS, Berlyn GP, Miksche JP (1978) Nuclear DNA concentrations in populations of Pinus rigiaa. Am J Bot 65:192–196

    Article  CAS  Google Scholar 

  • Dhillon SS, Miksche JP, Cecich RA (1983) Microspectrophotometric applications in plant science research. In: Bechtel DB (ed) New frontiers in food microstructure. Am Assoc Cereal Chem, St. Paul. Mn. pp 27–69

    Google Scholar 

  • Doerschug EB, Miksche JP, Palmer R (1978) DNA content and number of ribosomal RNA genes as related to protein content in cultivars and plant introductions of Glycine max. Can J Genet Cytol 20:531–538

    CAS  Google Scholar 

  • Feulgen R. Rossenbeck H (1924) Mikroscopisch-chemischer Nachweis einer Nucleinsäure vom Typus Thymonucleinsäure und die darauf beruhende Elektiv-Färbung von Zellkernen in mikroscopischen Preparaten. Z Physiol Chem 135:203–248

    Article  CAS  Google Scholar 

  • Frisch B, Nagl W (1979) Patterns of endopolyploidy and 2C nuclear DNA content (Feulgen) in Scilla (Liliaceae). Plant Syst Evol 131:261–276

    Article  CAS  Google Scholar 

  • Goldstein DJ (1970) Aspects of scanning microdensitometry I. Stray light (glare). J Microsc 92:1–6

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DJ (1971) Aspects ofscanning microdensitometry II. Spot size,focus, and resolution. J M icrosc 93:15–42

    Google Scholar 

  • Goldstein DJ (1975) Aspects of scanning microdensitometry III. The monochromator system. J Microsc 105:33–56

    Article  PubMed  CAS  Google Scholar 

  • Greenwood MS, Berlyn GP (1968) Feulgen cytophotometry of pine nuclei: Effects of fixation role of formalin. Stain Technol 111–117

    Google Scholar 

  • Hull H M, Howshaw RW, Wang J-C (1982) Cytofluorometric determination of nuclear DNA in living and preserved algae. Stain Technol 57:273–282

    PubMed  CAS  Google Scholar 

  • Jackson JF (1985) The nucleus-cytological methods and isolation for biochemical studies. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, NS, vol 1. Cell components. Springer, Berlin Heidelberg New York Tokyo, pp 353–374

    Google Scholar 

  • Karp A, Bright SWJ (1985) On the causes and origins of somaclonal variation. Oxford Surv Plant Mol Cell Biol 2:199–234

    Google Scholar 

  • Kawano S, Nishibayashi, Shiraishi N, Miyehara M, Kuroiwa T (1983) Variance of ploidy in mitochondrial nucleus during spherulation in Physarum polyycephalum. Exn Cell Res 149: 359–363.

    Article  CAS  Google Scholar 

  • Laloue M, Courtois D, Manigault P(1980) Convenient and rapid fluorescent staining of plant cell nuclei with “33258” Hoechst. Plant Sci Lett 17:175–179

    Google Scholar 

  • Lawrence ME, Possingham JV (1986) Direct measurement of femtogram amounts of DNA in cells and chloroplasts by quantitative microspectrofluorometrv. J Histochem Cvtoche: 34761–7688

    Google Scholar 

  • Lillie RD (1951) Simplification of the manufacture of Schiffreagent for use in histochemical procedures. Stain Technol 26:163–165

    PubMed  CAS  Google Scholar 

  • Mendelsohn ML (1958) The two-wavelength method of microspectrophotometry 2 A set of tables to facilitate calculations. J Biophys Biochem Cytol: 4415–424

    Google Scholar 

  • Miksche JP (1968) Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana. Can J Genet Cytol: 10:590–600

    Google Scholar 

  • Miksche JP, Dhillon SS (1984) Microspectrophotometric analysis. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 1. Academic Press. New York London,pp 744–752

    Google Scholar 

  • Miksche JP, Dhillon SS, Berlyn GP, Landauer KJ (1979) Nonspecific light loss and intrinsic DNA variation problems associated with Feulgen DNA cytophotometry. J Histochem Cytochem 26:1377–1379

    Article  Google Scholar 

  • Miyakawa I, Aoi H, Sands N. Kuroiwa T (1984) Fluorescence microscopic studies of mitochondrial nucleoids during meiosis and sporulation in yeast, Saccharomvces cerevisiae. J Cell Sci 662: 1–38

    Google Scholar 

  • Miyamura S, Nagata T, Kuroiwa T (1986) Quantitative fluorescence microscopy on dynamic changes of plastid nucleoids during wheat development. Protonlasma 133:66–72

    Article  CAS  Google Scholar 

  • Nagl W (1978) Endopolyploidy and polyteny in differentiation and evolution. Elsevier North-Holland Biomedical Press, Amsterdam, 283 pp

    Google Scholar 

  • Nagl W (1982) Cell growth and nuclear DNA increase by endoreduplication and differential DNA replication. In: Nicolini C (ed) Cell growth. Plenum, New York, pp 619–651

    Chapter  Google Scholar 

  • Ornstein L (1952) The distribution error in microspectrophotometry. Lab Invest 1:250–262

    PubMed  CAS  Google Scholar 

  • Patau K (1952) Absorption microphotometry of irregular-shaped objects. Chromosoma 5:241–262

    Google Scholar 

  • Renfroe MH (1984) Organogenesis and nuclear DNA content in pine tissue cultures. Doctoral dissertation, Yale University Library, New Haven, Connecticut, USA

    Google Scholar 

  • Renfroe MH, Berlyn GP (1985) Variation in nuclear DNA content in Pinus taeda L. tissue culture of diploid origin. J Plant Physiol 121:131–139

    Article  Google Scholar 

  • Ruch F (1970) Principles and some applications of cytofluorometry. In: Wied GL, Bahr GF (eds) Introduction to quantitative cytochemistry, vol 2. Academic Press, New York London. pp 431–450

    Google Scholar 

  • Sengbusch G von, Thaer AA (1973) Some aspects of instrumentation and methods as applied to fluorometry at the microscale. In : Thaer AA, Sernetz M (eds) Fluorescence techniques in cell biology. Springer, Berlin Heidelberg New York, pp 31–39

    Chapter  Google Scholar 

  • Thaer AA (1966) Instrumentation for microfluorometry. In: Wied GL (ed) Introduction to quantitative cytochemistry, vol 1. Academic Press, New York London, pp 409–426

    Google Scholar 

  • Wied GL (ed) (1966) Introduction to quantitative cytochemistry, vol 1. Academic Press, New York London

    Google Scholar 

  • Wied GL, Bahr GF (eds) (1970) Introduction to quantitative cytochemistry, vol 2. Academic Press, New York London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berlyn, G.P., Anoruo, A.O., Beck, R.C. (1990). Optical Techniques to Measure Genetic Instability in Cell and Tissue Cultures. In: Bajaj, Y.P.S. (eds) Somaclonal Variation in Crop Improvement I. Biotechnology in Agriculture and Forestry, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02636-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02636-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08077-7

  • Online ISBN: 978-3-662-02636-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics