Skip to main content

Analysis of Ecotoxic Agents Using Pollen Tests

  • Chapter
Plant Toxin Analysis

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 13))

Abstract

The rapid increase in agricultural and industrial technology has been accompanied by a dramatic increase in the number and diversity of potentially toxic agents released into the biosphere. The potential value of pollen systems in assessing the impact of these agents on a wide range of biological organisms has not been adequately evaluated. The production of seed crops depends, to a large extent, on normal fertilization and seed development. Therefore, on a practical level, information as to the effect of these agents on the pollen system and fertilization process is essential to predict the effect of these agents on the production of agricultural crops and the world’s food supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam DF (1976) Sulfur compounds. In: Stern AC (ed) Air pollution: measuring, monitoring, and surveillance of air pollution, vol 3, 3rd edn. Academic Press, New York, pp 214–257

    Google Scholar 

  • Alexander MP (1987) A method for staining pollen tubes in pistil. Stain Technol 62: 107–112

    PubMed  CAS  Google Scholar 

  • Barnabas B, Rajki E (1976) Storage of maize (Zea mays L.) pollen at —196°C in liquid nitrogen. Euphytica 25: 747–752

    Article  Google Scholar 

  • Barnabas B, Rajki E (1981) Fertility of deep-frozen maize (Zea mays L.) pollen. Ann Bot 48: 861–864

    Google Scholar 

  • Barnabas B, Kovacs G, Abranyi A, Pfahler PL (1988) Effect of pollen storage by drying and deep-freezing on the expression of different agronomic traits in maize (Zea mays L.). Euphytica 39: 221–225

    Article  Google Scholar 

  • Bergamini-Mulcahy G, Mulcahy DL (1985) Ovarian influence on pollen tube growth as indicated by the semivivo technique. Am J Bot 72: 1078–1080

    Article  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50: 859–865

    Article  CAS  Google Scholar 

  • Cox RM (1983) Sensitivity of forest plant reproduction to long range transported air pollutants: in vitro sensitivity of pollen to simulated acid rain. New Phytol 95:269—

    Google Scholar 

  • Dupuis I, Dumas C (1989) In vitro pollination as a model for studying fertilization in maize (Zea mays L.). Sex Plant Reprod 2: 265–269

    Article  Google Scholar 

  • Feder WA (1981) Bioassaying for ozone with pollen systems. Environ Health Perspect 37: 117–123

    Article  PubMed  CAS  Google Scholar 

  • Gentile AG, Vaughan AW, Richman SM, Eaton AT (1973) Corn pollen germination and tube elongation inhibited or reduced by commercial and experimental formulations of pesticides and adjuvants. Environ Entomol 2: 473–476

    CAS  Google Scholar 

  • Gressel J (1985) Biotechnologically conferring herbicide resistance in crops: the present realities. In: van Vloten-Doting L, Groot GS, Hall TC (eds) Molecular form and function of the plant genome. Plenum, New York, pp 489–504

    Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107: 1–78

    Article  Google Scholar 

  • House LR, Nelson OE (1958) Tracer study of pollen tube growth in cross-sterile maize. J Hered 49: 18–21

    Google Scholar 

  • Kandasamy MK, Kristen U (1987) Pentachlorophenol affects mitochondria and induces formation of Golgi apparatus-endoplasmic reticulum hybrids in tobacco pollen tubes. Protoplasma 141: 112–120

    Article  CAS  Google Scholar 

  • Kandasamy MK, Kristen U (1989) Influence of tetraethyllead on growth and ultra-structure of tobacco pollen tubes. Environ Exp Bot 29: 283–292

    Article  CAS  Google Scholar 

  • Kappler R, Kristen U (1987) Photometric quantification of in vitro pollen tube growth: a new method suited to determine the cytotoxicity of various environmental substances. Environ Exp Bot 27: 305–309

    Article  CAS  Google Scholar 

  • Linskens HF, van Megen Y, Pfahler PL, Wilcox M (1985) Sulfur dioxide effects on petunia pollen germination and seed set. Bull Environ Contam Toxicol 34: 691–695

    Article  PubMed  CAS  Google Scholar 

  • Maugh TH II (1980) Ozone depletion would have dire effects. Science 207: 394–395

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nelson OE (1962) The waxy locus in maize I. Intralocus recombination frequency estimates by pollen and by conventional analyses. Genetics 47: 737–742

    PubMed  CAS  Google Scholar 

  • Ottaviano E, Mulcahy DL (1989) Genetics of angiosperm pollen. Adv Genet 26: 1–64

    Article  Google Scholar 

  • Pfahler PL (1967a) Fertilization ability of maize pollen grains II. Pollen genotype, female sporophyte and pollen storage interactions. Genetics 57: 513–521

    PubMed  CAS  Google Scholar 

  • Pfahler PL (1967b) In vitro germination and pollen tube growth of maize (Zea mays L.) pollen I. Calcium and boron effects. Can J Bot 45: 839–845

    Article  Google Scholar 

  • Pfahler PL (1968) In vitro germination and pollen tube growth in maize (Zea mays) pollen II. Pollen source, calcium, and boron interactions. Can J Bot 46: 235–240

    Article  Google Scholar 

  • Pfahler PL (1975) Factors affecting male transmission in maize (Zea mays L.). In: Mulcahy DL (ed) Gamete competition in plants and animals. North-Holland, Amsterdam, pp 115–124

    Google Scholar 

  • Pfahler PL (1978) Biology of the maize male gametophyte. In: Walden DB (ed) Maize breeding and genetics. John Wiley & Sons, New York, pp 517–530

    Google Scholar 

  • Pfahler PL (1981) In vitro germination characteristics of maize pollen to detect biological activity of environmental pollutants. Environ Health Perspect 37: 125–132

    Article  PubMed  CAS  Google Scholar 

  • Pfahler PL (1983) Comparative effectiveness of pollen genotype selection in higher plants. In: Mulcahy DL, Ottaviano E (eds) Pollen: biology and implications for plant breeding. Elsevier Biomedical, New York, pp 361–366

    Google Scholar 

  • Pfahler PL (1986) Pollen storage effects on early seedling growth in maize. In: Mulcahy DL, Bergamini Mulcahy G, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer, Berlin Heidelberg New York, pp 147–152

    Chapter  Google Scholar 

  • Pfahler PL, Linskens HF (1983) Methods for assessing the effects of chemicals on reproduction in higher plants. In: Vouk VB, Sheehan PJ (eds) Methods for assessing the effects of chemicals on reproductive functions (SCOPE PUBL 20). John Wiley & Sons, Chichester, pp 499–514

    Google Scholar 

  • Pfahler PL, Linskens HF, Wilcox M (1980) In vitro germination and pollen tube growth of maize (Zea mays) pollen IX. Pollen source genotype and nonionic surfactant interactions. Can J Bot 58: 557–561

    Google Scholar 

  • Pfahler PL, Mulcahy DL, Barnabas B (1986a) The effect of forced shedding on pollen traits, seedsetting, and transmission at various maize (Zea mays L.) endosperm mutant loci. Acta Bot Neerl 35: 195–200

    Google Scholar 

  • Pfahler PL, Mulcahy DL, Barnabas B (1986b) The effect of prepollination stylar treatments on seedset and pollen transmission at various maize (Zea mays L.) endosperm mutant loci. Acta Bot Neerl 35: 201–207

    CAS  Google Scholar 

  • Plewa MJ, Wagner ED (1981) Germinal cell mutagenesis in specially designed maize genotypes. Environ Health Perspect 37: 61–73

    Article  PubMed  CAS  Google Scholar 

  • Polowick PL, Greyson RI (1982) Anther development, meiosis and pollen formation in Zea tassels cultured in defined liquid medium. Plant Sci Lett 26: 139–145

    Article  Google Scholar 

  • Sari Gorla M, Ottaviano E, Frascaroli E, Landi P (1989) Herbicide-tolerant corn by pollen selection. Sex Plant Reprod 2: 65–69

    Google Scholar 

  • Shivanna KR, Johri BM (1985) The angiosperm pollen structure and function. John Wiley & Sons, New York

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen biology, biochemistry, management. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vasil IK (1987) Physiology and culture of pollen. Int Rev Cytol 107: 127–174

    Article  Google Scholar 

  • Wolters JHB, Martens MJM (1987) Effects of air pollutants on pollen. Bot Rev 53: 372–414

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfahler, P.L. (1992). Analysis of Ecotoxic Agents Using Pollen Tests. In: Linskens, H.F., Jackson, J.F. (eds) Plant Toxin Analysis. Modern Methods of Plant Analysis, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02783-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02783-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08090-6

  • Online ISBN: 978-3-662-02783-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics