Skip to main content

Abstract

A fundamental paradox of classical physics is why matter, which is held together by Coulomb forces, does not collapse. The resolution is given here in three steps. First, the stability of atom is demonstrated, in the framework of nonrelativistic quantum mechanics. Next the Pauli principle, together with some facts about Thomas-Fermi theory, is shown, to account for the stability (i.e., saturation) of bulk matter. Thomas-Fermi theory is developed in some detail because, as is also pointed out, it is the asymptotically correct picture of heavy atoms and molecules (in the Z?8 limit). Finally, a rigorous version of screening is introduced to account for thermodynamic stability.

Work partially supported by U. S. National Science Foundation grant MCS 75–21684.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balàzs, N., 1967, “Formation of stable molecules within the statistical theory of atoms,” Phys. Rev. 156, 42–47.

    Article  ADS  Google Scholar 

  • Barnes, J. F., 1975, private communication.

    Google Scholar 

  • Birman, M. S., 1961, Mat. Sb. 55 (97), 125–174

    MathSciNet  Google Scholar 

  • Birman, M. S. [“The spectrum of singular boundary value problems,” Am. Math. Soc. Transi. Ser. 2 53, 23–80 (1966)].

    MATH  Google Scholar 

  • Dirac, P. A. M., 1930, “Note on exchange phenomena in the Thomas atom,” Proc. Camb. Phil. Soc. 26, 376–385.

    Article  ADS  MATH  Google Scholar 

  • Dyson, F.J., 1967, “Ground-state energy of a finite system of charged particles,” J. Math. Phys. 8, 1538–1545.

    Article  MathSciNet  ADS  Google Scholar 

  • Dyson, F. J., and A. Lenard, 1967, “Stability of matter. I.” J. Math. Phys. 8, 423–434.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fermi, E., 1927, “Un metodo statistico per la determinazione di alcune prioretà dell’atome,” Rend. Acad. Naz. Lincei 6, 602–607.

    Google Scholar 

  • Fock, V., 1930, “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems,” Z. Phys. 61, 126–148;

    Article  ADS  MATH  Google Scholar 

  • see also V. Fock, 1930, “Selfconsistent field mit austausch fÜr Natrium,” Phys. 62, 795–805.

    Article  MATH  Google Scholar 

  • Gombâs, P., 1949, Die statistischen Theorie des Atomes und ihre Anwendungen (Springer Verlag, Berlin).

    Book  Google Scholar 

  • Hartree, D. R., 1927–1928, “The wave mechanics of an atom with a non-Coulomb central field. Parti. Theory and methods,” Proc. Camb. Phil. Soc. 24, 89–110.

    Article  ADS  Google Scholar 

  • Heisenberg, W., 1927, “Über den anschaulichen Inhalt der quanten-theoretischen Kinematik und Mechanik,” Z. Phys. 43, 172–198.

    Article  ADS  MATH  Google Scholar 

  • Jeans, J. F.I., 1915, The Mathematical Theory of Electricity and Magnetism (Cambridge University, Cambridge) 3rd ed., p. 168f.

    Google Scholar 

  • Kato, T., “Fundamental properties of Hamiltonian operators of Schrödinger type,” Trans. Am. Math. Soc. 70, 195–211.

    Google Scholar 

  • Kirzhnits, D. A., 1957, J. Exptl. Theoret. Phys. (USSR) 32, 115–123

    Google Scholar 

  • Kirzhnits, D. A., [Engl, transi. “Quantum corrections to the Thomas-Fermi equation,” Sov. Phys. JETP 5, 64–71 (1957)].

    MathSciNet  MATH  Google Scholar 

  • Kompaneets, A. S., and E. S. Pavlovskiy 1956, J. Exptl. Theo ret. Phys. (USSR) 31, 427–438

    Google Scholar 

  • Kompaneets, A. S., and E. S. Pavlovskiy [Engl, transi. “The self-consistent field equations in an atom,” Sov. Phys. JETP 4, 328–336 (1957)].

    Google Scholar 

  • Lenard, A., and F.J. Dyson, 1968, “Stability of matter. II,” J. Math. Phys. 9, 698–711.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lenz, W., 1932, “Über die Anwendbarkeit der statistischen Methode auf Ionengitter,” Z. Phys. 77, 713–721.

    Article  ADS  Google Scholar 

  • Lieb, E. H., 1976, “Bounds on the eigenvalues of the Laplace and Schrödinger operators,” Bull. Am. Math. Soc, in press.

    Google Scholar 

  • Lieb, E. H., and J. L. Lebowitz, 1972, “The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei,” Adv. Math. 9, 316–398.

    Article  MathSciNet  MATH  Google Scholar 

  • See also J. L. Lebowitz and E.H. Lieb, 1969, “Existence of thermodynamics for real matter with Coulomb forces,” Phys. Rev. Lett. 22, 631–634.

    Article  ADS  Google Scholar 

  • Lieb, E.H., and H. Narnhofer, 1975, “The thermodynamic limit for jellium,” J. Stat. Phys. 12, 291–310; Erratum: J. Stat. Phys. 14, No. 5 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lieb.’E. H., and B. Simon, “On solutions to the Hartree-Fock problem for atoms and molecules,” J. Chem. Phys. 61, 735–736. Also, a longer paper in preparation.

    Google Scholar 

  • Lieb, E. H., and B. Simon, 1977, “The Thomas-Fermi theory of atoms, molecules and solids,” Adv. Math., in press. See also E. H. Lieb and B. Simon, 1973, “Thomas-Fermi theory revisited,” Phys. Rev. Lett. 33, 681–683.

    Article  ADS  Google Scholar 

  • Lieb, E.H., and W. E. Thirring, 1975, “A bound for the kinetic energy of fermions which proves the stability of matter,” Phys. Rev. Lett. 35, 687–689; Errata: Phys. Rev. Lett. 35, 1116.

    Article  ADS  Google Scholar 

  • For more details on kinetic energy inequalities and their application, see also E.H. Lieb and W. E. Thirring, 1976, “Inequalities for the moments of the Eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities,” in Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, edited by E. H. Lieb, B. Simon, and A. S. Wightman (Princeton University, Princeton).

    Google Scholar 

  • Rosen, G., 1971, “Minimum value for c in the Sobolev inequality || Ø ||3 ≤ c|| ∇Ø ||3,” SIAM J. Appl. Math. 21, 30–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwinger, J., 1961, “On the bound states of a given potential,” Proc. Nat. Acad. Sci. (U.S.) 47, 122–129.

    Article  MathSciNet  ADS  Google Scholar 

  • Scott, J. M. C., 1952, “The binding energy of the Thomas Fermi atom,” Phil. Mag. 43, 859–867.

    Google Scholar 

  • Sheldon, J. W., 1955, “Use of the statistical field approximation in molecular physics,” Phys. Rev. 99, 1291–1301.

    Article  ADS  MATH  Google Scholar 

  • Slater, J. C., 1930, “The theory of complex spectra,” Phys. Rev. 34, 1293–1322.

    Article  ADS  Google Scholar 

  • Sobolev, S. L., 1938, Mat. Sb. 46, 471.

    Google Scholar 

  • See also S. L. Sobolev, 1950, “Applications of functional analysis in mathematical physics,” Leningrad; Am. Math. Soc. Transi. Monographs 7 (1963).

    Google Scholar 

  • Sommerfeld, A., 1932, “Asymptotische Integration der Differ-ential-gleichung des Thomas-Fermischen Atoms,” Z. Phys. 78, 283–308.

    Article  ADS  Google Scholar 

  • Teller, E., 1962, “On the stability of molecules in the Thomas-Fermi theory,” Rev. Mod. Phys. 34, 627–631.

    Article  ADS  MATH  Google Scholar 

  • Thomas, L. H., 1927, “The calculation of atomic fields,” Proc. Camb. Phil. Soc. 23, 542–548.

    Article  ADS  MATH  Google Scholar 

  • Von Weizsäcker, C.F., 1935, “Zur Theorie der Kernmassen,” Z. Phys. 96, 431–458.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H. (2001). The stability of matter. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics