Skip to main content

Ligaments of the Knee in Sports Injuries and Rehabilitation

  • Chapter
Rehabilitation of Sports Injuries

Abstract

Increased athletic participation in high impact and high risk sports has increased the occurrence of soft tissue injuries in the knee. It has been estimated that the annual incidence of knee ligament injuries in the United States is 70,000 anterior cruciate ligament (ACL), 40,000 medial collateral ligament (MCL), and 20,000 combined ACL/MCL injuries [1, 2]. Seventy percent of all ACL injuries are sports-related [3]. In fact, an ACL injury occurs during every 1500 h of football, basketball, and soccer that are played [4]. A study from 1972 to 1987 concluded that an ACL tear occurs on approximately 1 out of 20,000 skier days [5]. Overall, 72% of all ACL injuries occur in males because they participate in sports more than females [6]. However, females have a proportionally much higher rate of ACL injury than males. Almost three times as many female basketball players and over two times as many female soccer players as their male counterparts injure their ACL [7]. Overall, the serious knee injury rate in all female athletes has increased to twice the level of that in males [8]. As the management of such ligamentous injuries occurs with greater frequency, elucidation of ligament function has become more emergent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirshman H, Daniel D, Miyasaka K (1990) The fate of un-operated knee ligament injuries. In: Daniel D, Akeson W, O’Connor J (eds) Knee ligaments: Structure, function, injury and repair. Raven Press, New York, pp 481–503

    Google Scholar 

  2. Miyasaka KC, Daniel DM, Stone ML et al (1991) The incidence of knee ligament injuries in the general population. Am J Knee Surg 4: 3–8

    Google Scholar 

  3. Johnson RJ (1988) Prevention of cruciate ligament injuries. In: Feagin JA (ed) The Crucial Ligaments. Churchill Livingstone, New York, pp 349–356

    Google Scholar 

  4. Daniel DM (1994) Anterior cruciate ligament injuries. In: DeLee J (ed) Orthopaedic Sports Medicine. W.B. Saunders, Philadelphia

    Google Scholar 

  5. Johnson RJ, Pope MH (1991) Epidemiology and prevention of skiing injuries. Ann Chir Gynaecol 8oaio-n5

    Google Scholar 

  6. Ireland ML (1999) Anterior cruciate ligament injury in female athletes: Epidemiology. J Athl Train 34:150–154

    Google Scholar 

  7. Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am J Sports Med 23: 694–701

    Google Scholar 

  8. Huston L), Wojtys EM (1996) Neuromuscular performance characteristics in elite female athletes. Am J Sports Med 24: 427–436

    Article  Google Scholar 

  9. Gillquist J (1990) Knee stability: Its effect on articular cartilage. In: Ewing DD (ed) Articular Cartilage and Knee Joint Function: Basic Science and Arthroscopy. Raven Press, New York

    Google Scholar 

  10. Frank C, Amiel D, Woo SL-Y et al. (1985) Normal ligament properties and ligament healing. Clin Orthop 196: 15–25

    PubMed  Google Scholar 

  11. Woo SL-Y, Gomez MA, Seguchi Yet al. (1983) Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1: 22–29

    Article  PubMed  CAS  Google Scholar 

  12. Woo SL-Y, Maynard J, Butler D et al. (1988) Ligament, tendon, and joint capsule insertions to bone. In: Woo SL-Y, Buckwalter JA (eds) Injury and Repair of Musculoskeletal Soft Tissues. American Academy of Orthopaedic Surgeons, Chicago, pp 133–166

    Google Scholar 

  13. Woo SL-Y, An KN, Arnoczky SP et al. (1994) Anatomy, biology, and biomechanics of tendon, ligament, and meniscus. In: Simon SR (ed) Orthopaedic Basic Science. American Academy of Orthopaedic Surgeons, Park Ridge, pp 45-87

    Google Scholar 

  14. Niyibizi C, Sagarriga Visconte C, Kavalkovich K et al. (1995) Collagens in adult bovine medial collateral ligament: Immunofluorescence localization by confocal microscopy reveals that type XIV collagen predominates at the ligament-bone junction. Matrix Biot 14:743-751

    Google Scholar 

  15. Niyibizi C, Sagarriga Visconti C, Gibson G et al. (1996) Identification and immunolocalization of type X collagen at the ligament-bone interface. Biochem Biophys Res Commun 222: 584–589

    Google Scholar 

  16. Sagarriga Visconti C, Kavalkovich K, Wu JJ et al. (1996) Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch Biochem Biophys 328: 135–142

    Article  PubMed  CAS  Google Scholar 

  17. Woo SL-Y, Gomez MA, Akeson WH (1981) The time and history-dependent viscoelastic properties of the canine medial collateral ligament. J Biomech Eng 103: 293–298

    Article  PubMed  CAS  Google Scholar 

  18. Lee TQ, Woo SL-Y (1988) A new method for determining cross-sectional shape and area of soft tissues. J Biomech Eng uo: 110–114

    Google Scholar 

  19. Woo SL-Y, Danto MI, Ohland KJ et al. (1990) The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: A comparative study with two existing methods. J Biomech Eng 112: 426–431

    Google Scholar 

  20. Hollis MJ, Takai S, Adams DJ et al. (1991) The effects of knee motion and external loading on the length of the anterior cruciate ligament: A kinematic study. J Biomech Eng 113: 208–214

    Google Scholar 

  21. Woo SL-Y, Akeson WH, Jemmott GF et al. (1976) Measurement of nonhomogeneous directional mechanical properties of articular cartilage in tension. J Biomech 9: 785–791

    Article  PubMed  CAS  Google Scholar 

  22. Woo SL-Y, Orlando CA, Gomez MA et al. (1986) Tensile properties of the medial collateral ligament as a function of age. J Orthop Res 4x33–141

    Google Scholar 

  23. Inoue M, Woo SL-Y, Amiel D et al. (1990) Effects of surgical treatment and immobilization on the healing of the medial collateral ligament: A long-term multidisciplinary study. Connect Tissue Res 25: 13–26

    Google Scholar 

  24. Ohland KJ, Weiss JA, Anderson DR et al. (1991) Long-term healing of the medial collateral ligament ( MCL) and its insertion sites. Trans Orthop Res Soc 16: 158

    Google Scholar 

  25. Woo SL-Y, Ohland KJ, Weiss JA (1990) Aging and sex-related changes in the biomechanical properties of the rabbit medial collateral ligament. Mech Ageing Dev 56: 129–142

    Article  PubMed  CAS  Google Scholar 

  26. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligaments in humans and rhesus monkeys. Age-related and species-related changes. J Bone Joint Surg Am 58Aa074–1082

    Google Scholar 

  27. Woo SL-Y, Hollis JM, Adams DJ et al. (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: The effect of specimen age and orientation. Am J Sports Med 19: 217–225

    Google Scholar 

  28. Danto MI, Woo SL-Y (1993) The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res n: 58–67

    Google Scholar 

  29. Woo SL-Y, Peterson RH, Ohland KJ et al. (1990) The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: A biomechanical and histological study. J Orthop Res 8: 712–721

    Google Scholar 

  30. Butler DL, Guan Y, Kay MD et al. (1992) Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 25: 511–518

    Article  PubMed  CAS  Google Scholar 

  31. Girgis FG, Marshall JL, Al Monajem ARS (1975) The cruciate ligaments of the knee joint: Anatomical and experimental analysis. Clin Orthop 106: 216–231

    Google Scholar 

  32. Fuss FK (1989) Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint. Am J Anat 184: 165–176

    Article  PubMed  CAS  Google Scholar 

  33. Harner CD, Livesay GA, Kashiwaguchi S et al. (1995) Comparative study of the size and shape of human anterior and posterior cruciate ligaments. J Orthop Res 13:429–434

    Google Scholar 

  34. Sakane M, Fox RJ, Woo SL-Y et al. (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15:285-293

    Google Scholar 

  35. Woo SL-Y, Newton PO, MacKenna DA et al. (1992) A comparative evaluation of the mechanical properties of the rabbit medial collateral and anterior cruciate ligaments. J Biomech 25:377–386

    Google Scholar 

  36. Harner CD, Xerogeanes JW, Livesay GA et al. (1995) The human posterior cruciate ligament complex: An interdisciplinary study. Am J Sports Med 23:736-745

    Google Scholar 

  37. Graf BK, Vanderby RJ, Ulm MJ et al. (1994) Effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy 10: 90–96

    Article  PubMed  CAS  Google Scholar 

  38. Woo SL-Y, Matthews JV, Akeson WH et al. (1975) Connective tissue response to immobility. Correlative study of biomechanical and biochemical measurements of normal and immobilized rabbit knees. Arth Rheum 18: 257–264

    Google Scholar 

  39. Woo SL-Y, Gomez MA, Sites TJ et al. (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am 69A: 1200–1211

    PubMed  CAS  Google Scholar 

  40. Newton PO, Woo SL-Y, Mackenna DA et al. (1995) Immobilization of the knee joint alters the mechanical and ultra-structural properties of the rabbit anterior cruciate ligament. J Orthop Res 13: 191–200

    Google Scholar 

  41. Larsen NP, Forwood MR, Parker AW (1987) Immobilization and retraining of cruciate ligaments in the rat. Acta Orthop Scand 58: 260–264

    Article  PubMed  CAS  Google Scholar 

  42. Noyes FR (1977) Functional properties of knee ligaments and alterations induced by immobilization: A correlative biomechanical and histological study in primates. Clin Orthop 123: 210–242

    PubMed  Google Scholar 

  43. Woo SL-Y, Kuei SC, Gomez MA et al. (1979) The effect of immobilization and exercise on the strength characteristics of bone-medial collateral ligament-bone complex. ASME Biomechanics Symposium, Niagara Fally, NY, pp 67–70

    Google Scholar 

  44. Baker CL, Liu SH (1994) Collateral ligament injuries of the knee: Operative and nonoperative approaches. In: Fu FH, Harner CD, Vince KG (eds) Knee Surgery. Williams and Wilkins, Baltimore, pp 787–808

    Google Scholar 

  45. Weiss JA, Woo SL-Y, Ohland KJ et al. (1991) Evaluation of a new injury model to study medial collateral ligament healing: Primary repair versus nonoperative treatment. J Orthop Res 9: 516–528

    Google Scholar 

  46. Woo SL-Y, Gomez MA, Inoue M et al. (1987) New experimental procedures to evaluate the biomechanical properties of healing canine medial collateral ligaments. J Orthop Res 5:425–432

    Google Scholar 

  47. Woo SL-Y, Inoue M, McGurk-Burleson E et al. (1987) Treatment of the medial collateral ligament injury II: Structure and function of canine knees in response to differing treatment regimens. Am J Sports Med 15: 22–29

    Google Scholar 

  48. Ohland KJM, Woo SL-Y, Weiss JM et al. (1991) Healing of combined injuries of the rabbit medial collateral ligament and its insertions: A long-term study on the effects of conservative vs. surgical treatment. Adv Bioeng 20: 447–448

    Google Scholar 

  49. Chimich D, Frank C, Shrive N et al. (1991) The effects of initial end contact on medial collateral ligament healing: A morphological and biomechanical study in a rabbit model. J Orthop Res 9:37–47

    Google Scholar 

  50. Loitz-Ramage BJ, Frank CB, Shrive NG (1997) Injury size affects long-term strength of the rabbit medial collateral ligament. Clin Orthop 337: 272–280

    Article  PubMed  Google Scholar 

  51. Ohno K, Pomaybo AS, Schmidt CC et al. (1995) Healing of the medial collateral ligament after a combined medial collateral and anterior cruciate ligament injury and reconstruction of the anterior cruciate ligament: Comparison of repair and nonrepair of medial collateral ligament tears in rabbits. J Orthop Res 13: 442–449

    Google Scholar 

  52. Fetto JF, Marshall JL (1978) Medial collateral ligament injuries of the knee. Clin Orthop 132: 206–218

    PubMed  Google Scholar 

  53. Warren RF, Marshall JL (1978) Injuries of the anterior cruciate and medial collateral ligaments of the knee. A long-term follow-up of 86 cases–part II. Clin Orthop 136: 198–211

    PubMed  Google Scholar 

  54. Yamaji T, Levine RE, Woo SL-Y et al. (1996) Medial collateral ligament healing one year after a concurrent medial collateral ligament and anterior cruciate ligament injury: An interdisciplinary study in rabbits. J Orthop Res 14: 223–227

    Google Scholar 

  55. Deie M, Marui T, Allen CR et al. (1997) The effects of age on rabbit MCL fibroblast matrix synthesis in response to TGF(31 or EGE Mech Ageing Dev 97: 121–130

    CAS  Google Scholar 

  56. Marui T, Niyibizi C, Georgescu HI et al. (1997) The effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res 15: 18–23

    Article  PubMed  CAS  Google Scholar 

  57. Scherping SC Jr, Schmidt CC, Georgescu HI et al. (1997) Effect of growth factors on the proliferation of ligament fibroblasts from skeletally mature rabbits. Conn Tissue Res 36: 1–8

    Article  CAS  Google Scholar 

  58. Schmidt CC, Georgescu HI, Kwoh CK et al. (1995) Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J Orthop Res 13: 184–190

    Google Scholar 

  59. Hildebrand KA, Woo SL, Smith DW et al. (1998) The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med 26:549–554

    Google Scholar 

  60. o.Batten ML, Hansen JC, Dahners LE (1996) Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. J Orthop Res 14: 736–741

    Article  Google Scholar 

  61. Letson AK, Dahners LE (1994) The effect of combinations of growth factors on ligament healing. Clin Orthop 308: 207–212

    Google Scholar 

  62. Spindler KP, Dawson JM, Stahlman GC et al. (1996) Collagen synthesis and biomechanical response to TGF-(32 in the healing rabbit MCL. Trans Orthop Res Soc 21: 793

    Google Scholar 

  63. Weiss JA, Beck CL, Levine RE et al. (1995) Effects of platelet-derived growth factor on early medial collateral ligament healing. Trans Orthop Res Soc 20: 159

    Google Scholar 

  64. Gerich TG, Fu FH, Robbins PD et al. (1996) Prospects for gene therapy in sports medicine. Knee Surg Sports Traumatol Arthrosc 4: 180–187

    Article  Google Scholar 

  65. Hildebrand KA, Deie M, Allen CR et al. (1999) Early expression of marker genes in the rabbit medial collateral and anterior cruciate ligaments: The use of different viral vectors and the effects of injury. J Orthop Res 17: 37–42

    Google Scholar 

  66. Lazarus HM, Haynesworth SE, Gerson SL et al. (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplant 16:557-564

    Google Scholar 

  67. Young RG, Butler DL, Weber W et al. (1998) Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair. J Orthop Res 16: 406–413

    Article  PubMed  CAS  Google Scholar 

  68. Lewis JL, Lew WD, Hill JA et al. (1989) Knee joint motion and ligamental forces before and after ACL reconstruction. J Biomech Eng 111: 97–106

    Article  PubMed  CAS  Google Scholar 

  69. Beynnon BD, Fleming BC, Johnson RJ et al. (1995) Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23: 24–34

    Google Scholar 

  70. Holden JP, Grood ES, Korvick DL et al. (1994) In vivo forces in the anterior cruciate ligament: Direct measurements during walking and trotting in a quadruped. J Biomech 2T517–526

    Google Scholar 

  71. Markolf KL, Gorek JF, Kabo JM et al. (1990) Direct measurement of resultant forces in the anterior cruciate ligament. J Bone Joint Surg Am 72A: 557–567

    PubMed  CAS  Google Scholar 

  72. Vahey JW, Draganich LF (1991) Tensions in the anterior and posterior cruciate ligaments of the knee during passive loading: Predicting the ligament loads from in-situ measurements. J Orthop Res 9: 529–538

    Google Scholar 

  73. Takai S, Livesay GA, Woo SL-Y et al. (1993) Determination of the in-situ loads on the human anterior cruciate ligament. J Orthop Res 11: 686–695

    Google Scholar 

  74. Fujie H, Mabuchi K, Woo SL-Y et al. (1993) The use of robotics technology to study human joint kinematics: A new methodology. J Biomech Eng 115: 211–217

    Google Scholar 

  75. Fujie H, Livesay GA, Woo SL-Y et al. (1995) The use of a universal force-moment sensor to determine in-situ forces in ligaments: A new methodology. J Biomech Eng 117: 1–7

    Google Scholar 

  76. Rudy TW, Livesay GA, Woo SL-Y et al. (1996) A combined robotics/universal force sensor approach to determine in-situ forces of knee ligaments. J Biomech 29: 1357–1360

    Article  PubMed  CAS  Google Scholar 

  77. Shelbourne KD, Gray T (1997) Anterior cruciate ligament reconstruction with autogenous patellar tendon graft followed by accelerated rehabilitation. A two-to nine-year follow-up. Am J Sports Med 25: 786–795

    Google Scholar 

  78. Jackson DW, Grood ES, Goldstein JD et al. (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21: 176–185

    Google Scholar 

  79. McPherson GK, Mendenhall HV, Gibbons DF et al. (1985) Experimental, mechanical and histologic evaluation of the Kennedy ligament augmentation device. Clin Orthop 196x86–195

    Google Scholar 

  80. Yoshiya S, Andrish JT, Manley MT et al. (1986) Augmentation of anterior cruciate ligament reconstruction in dogs with prostheses of different stiffnesses. J Orthop Res 4475485

    Google Scholar 

  81. Ballock RT, Woo SL-Y, Lyon RM et al. (1989) Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit–a long term histological and biomechanical study. J Orthop Res 7: 474–485

    Article  PubMed  CAS  Google Scholar 

  82. Beynnon BD, Johnson RJ, Toyama H et al. (1994) The relationship between anterior-posterior knee laxity and the structural properties of the patellar tendon graft: A study in canines. Am J Sports Med 22: 812–820

    Google Scholar 

  83. Rupp S, Krauss PW, Fritsch EW (1997) Fixation strength of a biodegradable interference screw and a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft. Arthroscopy 13: 61–65

    Article  PubMed  CAS  Google Scholar 

  84. Hoher J, Sakane M, Vogrin TM et al. (1998) Viskoplastische Elongation eines gevierfachten Semitendinosussehnenkonstrukts mit Tape-und Fadenfixierung unter zyklischer Belastung. Arthroskopie 11: 52–55

    Article  Google Scholar 

  85. Hoher J, Livesay GA, Ma CB et al. (1999) Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc 7: 215–219

    Article  PubMed  CAS  Google Scholar 

  86. Grana WA, Egle DM, Mahnken R et al. (1994) An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med 22:344-351

    Google Scholar 

  87. Rodeo SA, Arnoczky SP, Torzilli PA et al. (1993) Tendon-healing in a bone tunnel. J Bone Joint Surg 75-A:1795–1803

    Google Scholar 

  88. Papageorgiou CD, Ma CB, Withrow JD et al. (1999) The multidisciplinary study of the healing of an intra-articular ACL replacement graft. 25th Annual Meeting of the American Orthopaedic Society for Sports Medicine, Traverse City, p 446

    Google Scholar 

  89. Fu FH, Woo SL-Y, Irrgang JJ (1992) Current concepts for rehabilitation following anterior cruciate ligament reconstruction. ACL Surg Rehab 15: 270–278

    CAS  Google Scholar 

  90. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament surgery. Am J Sports Med 18: 292–299

    Article  Google Scholar 

  91. Beynnon BD, Johnson RJ, Fleming BC et al. (1997) The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and a closed kinetic chain exercise. Am J Sports Med 25: 823–829

    Google Scholar 

  92. Li G, Rudy TW, Sakane M et al. (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32: 395–400

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woo, S.LY., Wong, E.K., Lee, J.M., Yagi, M., Fu, F.H. (2001). Ligaments of the Knee in Sports Injuries and Rehabilitation. In: Puddu, G., Giombini, A., Selvanetti, A. (eds) Rehabilitation of Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04369-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04369-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08690-8

  • Online ISBN: 978-3-662-04369-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics