Skip to main content

Procedure for Determining the Crack Resistance Behaviour Using the Instrumented Charpy Impact Test

  • Chapter
Deformation and Fracture Behaviour of Polymers

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The instrumented Charpy impact test is used for determining properties related to the impact strength of plastics. It is an addition to the conventional pendulum impact test described in ISO 179 [1]; it is carried out on razor-blade-notched specimens. The plastics on which it can be used range from brittle thermosets to high-impact polymer blends. Both the load and the deflection signals are recorded, and the impact energy is divided into an elastic and a plastic part. If the requirements on the specimen size and on the notch are satisfied, geometry-independent material parameters can be calculated. These parameters can be used for control and for quality assurance as well as for research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DIN EN ISO 179: Plastics — Determination of Charpy Impact Properties — Part 1 (2000): Non-Instrumented Impact Test. Part 2 (2000): Instrumented Impact Test

    Google Scholar 

  2. ASTM E 399 (1990): Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials. Annual Book of ASTM Standards, Philadelphia Vol. 03. 01

    Google Scholar 

  3. Sumpter J. D. G., Turner C. E. (1976): Cracks and fracture. In: ASTM STP 601: 3-18

    Google Scholar 

  4. Merkle J. G., Corten H. T. (1974): f-integral analysis for the compact specimen, considering axial force as well as bending effects. J. Pressure Vessel Technol. 96, 4: 286 - 292

    Google Scholar 

  5. Hoffmann H., Grellmann W., Zilvar V. (1986): Instrumented impact studies of some thermoplastic composites. In: 28th Microsymposium on Macromolecules and Polymer Composites, Prague, July 1985. Walter de Gruyter, Berlin, New York: 233 - 242

    Google Scholar 

  6. Grellmann W., Jungbluth M. (1987): Application of the crack-opening displacement concept for determining geometry-independent fracture mechanical parameters in the instrumented Charpy impact Test. In: Fracture Mechanics, Micromechanics and Coupled Fields (FMC) Series No. 37, Institut fir Mechanik, Berlin, Chemnitz: 186 - 192

    Google Scholar 

  7. Grellmann W. (1982): Problems and results of instrumented Charpy impact test of polymers. In: Fracture Mechanics, Micromechanics and Coupled Fields (FMC) Series, No. 3, Institut fur Mechanik, Berlin, Chemnitz: 102 - 111

    Google Scholar 

  8. Grellmann W. (1982): Problems to investigate fracture loads and inertial forces for the determination of dynamic fracture toughness of polymers. In: Fracture Mechanics, Micro-mechanics and Coupled Fields (FMC) Series, No. 3, Institut für Mechanik, Berlin, Chemnitz: 142 - 151

    Google Scholar 

  9. Grellmann W., Sommer J.-P., Hoffmann H., Michel B. (1987): Application of different J-integral evaluation methods for a description of toughness properties of polymers. In: Proceedings of the 1st Conference on Mechanics, Prague, Czech, June 29-July 3, Vol. 5: 129 - 133

    Google Scholar 

  10. Grellmann W, Che M. (1997): Assessment of temperature-dependent fracture behavior with different fracture mechanics concepts on example of unoriented and cold-rolled polypropylene. J. Appl. Polym. Sci. 66: 1237-1249

    Google Scholar 

  11. Grellmann W., Seidler S. (1991): Application of ESIS-procedure for determining the fracture resistance of plastics. In: Proceedings of the 10th Congress on Material Testing, Budapest, Hungary, October 7-11, Vol. II: 385 - 390

    Google Scholar 

  12. Seidler S., Grellmann W. (1999): Determination of geometry independent J-integral values on tough polymers. Int. J. Fracture, Lett. Fract. Micromech. 96: 117-122

    Google Scholar 

  13. Grellmann W., Seidler S., Bierögel C. (1997): Geometry-independent fracture mechanics values as a requirement for toughness optimization of polymers. In: Proceedings of the 9th International Conference on Fracture (ICF 9), Sydney, Australia, April 1-5, Vol. 2: 1013 - 1020

    Google Scholar 

  14. Seidler S., Grellmann W (1995): Application of the instrumented impact test to the toughness characterization of high impact thermoplastics. Polym. Test. 14: 453-469

    Google Scholar 

  15. Sunderland P., Kausch H. H. (1988): The application of fracture mechanics to the impact behaviour of rubber-toughened polyamides. Macromol. Chem., Macromol. Symp. 16: 365-378

    Google Scholar 

  16. Savadori A., Bramuzzo M., Marega C. (1984): J integral analysis of ductile fracture of PP/EP rubber blends. Polym. Test. 4: 73-89

    Google Scholar 

  17. Grellmann W., Seidler S., Schierjott U., Rufke B. (1988): Anordnung zur Bestimmung des JTJ-gesteuerten Rißwachstums bei schlagartiger Beanspruchung. German Patent DD 275 - 113

    Google Scholar 

  18. Standard Draft ESIS TC 4 (1995): A Testing Protocol for Conducting J-Crack Growth Resistance Curve Tests on Plastics

    Google Scholar 

  19. Pavan A. (1998): ESIS TC 4 activity on high rate testing of plastics. In: Proceedings of the 12th European Conference on Fracture, September 14-18, Sheffield, U.K., Vol. III: 1363 - 1368

    Google Scholar 

  20. Will P., Michel B., Schaper M. (1990): Justification of non linear J-resistance curves. Engng. Fract. Mech. 37, 2: 275 - 281

    Article  Google Scholar 

  21. Will P. (1994): R-curves of energy dissipative materials. J. Mat. Sci. 29: 2335 - 2340

    Article  Google Scholar 

  22. Paris P. C., Tada H., Zahoor A., Ernst H. (1977): The theory of instability of tearing mode of elastic-plastic crack growth. In: ASTM STP 668: Elastic plastic fracture: 5-36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grellmann, W., Seidler, S., Hesse, W. (2001). Procedure for Determining the Crack Resistance Behaviour Using the Instrumented Charpy Impact Test. In: Grellmann, W., Seidler, S. (eds) Deformation and Fracture Behaviour of Polymers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04556-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04556-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07453-0

  • Online ISBN: 978-3-662-04556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics