Skip to main content

Diagenesis of Organic Matter at the Water-Sediment Interface

  • Chapter
Chemistry of Marine Water and Sediments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

The water-sediment interface is an intense heterotrophic reactor through which organic matter must pass if it is to be preserved in sediments. The term “water-sediment interface” is not a simple descriptor. Strictly speaking, it implies a geometric surface between the water column and the sediments, but to a biogeochemist it is the “zone in which organic matter is first accumulated from the water column and is initially metabolized by the sediment heterotrophic community” (Mayer 1993). The depth of this zone may range from millimetres to a metre or more, depending on the perspective of the biogeochemist and the processes involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergamaschi BA, Tsamakis E, Keil RG, Eglinton T, Montluçon DB, Hedges JI (1997) The effect of grain size and surface area on organic matter, lignin and carbohydrate concentrations and molecular compositions in Peru Margin sediments. Geochim Cosmochim Acta 61:1247–1260

    Article  CAS  Google Scholar 

  • Berner RA (1989) Biogeochernical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Paleoceanogr Paleoclirnatol Paleoecol 73:97–122

    Article  Google Scholar 

  • Billen G (1982) Modelling the processes of organic matter degradation and nutrients in sedimentary environments. In: Nedwell DB, Brown CM (eds) Sediment microbiology. Academic Press, New York, pp 15–52

    Google Scholar 

  • Canuel EA, Martens CS (1996) Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment water interface. Geochim Cosmochim Acta 60:1793–1806

    Article  CAS  Google Scholar 

  • Calvert SE, Pedersen TF (1992) Organic carbon accumulation and preservation in marine sediments: How important is anoxia? In: Whelan J, Farrington JW (eds) Organic matter. Univ. Press, New York, pp 231–263

    Google Scholar 

  • Cowie GL (1990) Marine organic diagenesis: A comparative study of amino acids, neutral sugars, and lignin. PhD dissertation, University of Washington, Seattle

    Google Scholar 

  • Cowie GL, Hedges JI (1991) Organic carbon and nitrogen geochemistry of Black Sea surface sediments from stations spanning the oxic/anoxic boundary. In: Izdar E, Murray JW (eds) Black Sea oceanography. Kluwer Academic Publishers, Dordrecht, pp 343–359

    Chapter  Google Scholar 

  • Cowie GL, Hedges JI, Calvert SE (1992) Sources and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic sediment. Geochim Cosmochim Acta 56:1963–1978

    Article  CAS  Google Scholar 

  • Cowie GL, Hedges JI, Prahl FG, Lange GJ de (1995) Elemental and major biochemical changes across an oxidation from in a relict turbidite: A clear-cut oxygen effect. Geochim Cosmochim Acta 59:33–46

    Article  CAS  Google Scholar 

  • Cowie GL, Calvert SE, Pedersen TF, Schulz H, Rad U von (1999) Organic content and preservational controls in surficial shelf and slope sediments from the Arabian Sea (Pakistan margin). Mar Geol 161:23–38

    Article  CAS  Google Scholar 

  • Deming JW, Barros JA (1993) The early diagenesis of organic mater: Bacterial activity. In: Engel MH, Macko SA (eds) Organic geochemistry — principles and applications. Plenum Press, New York, pp 119–144

    Chapter  Google Scholar 

  • Emerson S, Hedges JI (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanogr 3:621–634

    Article  Google Scholar 

  • Gaskell SJ, Eglinton G (1975) Rapid hydrogenation of sterols in a contemporary lacustrine sediment. Nature 254:209–211

    Article  CAS  Google Scholar 

  • Graneshram RS, Calvert SE, Pederson TF, Cowie GL (1999) Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: Implications for hydrocarbon preservation. Geochim Cosmochim Acta 63:1723–1734

    Article  Google Scholar 

  • Hamilton SE, Hedges JI (1988) The comparative geochemistries of lignins and carbohydrates in an anoxic fjord. Geochim Cosmochim Acta 52:129–142

    Article  CAS  Google Scholar 

  • Hartnett HE, Keil RG, Hedges JI, Devol AH (1998) Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–574

    Article  CAS  Google Scholar 

  • Harvey HR, Macko SA (1997) Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions. Org Geochem 27:129–140

    Article  CAS  Google Scholar 

  • Harvey HR, Tuttle JH, Bell JT (1995) Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim Cosmochim Acta 59:3367–3377

    Article  CAS  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar Chem 49:81–115

    Article  CAS  Google Scholar 

  • Hedges JI, Hu FS, Devol AH, Hartnett HE, Tsamakis E, Keil RG (1999) Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. Am J Sci 299:529–555

    Article  CAS  Google Scholar 

  • Hedges JI, Eglinton G., Hatcher PG et al. (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    Article  CAS  Google Scholar 

  • Henrichs SM (1993) Early diagenesis of organic matter: The dynamics (rates) of cycling of organic compounds. In: Engel MH, Macko SA (eds) Organic geochemistry — principles and applications. Plenum Press, New York, pp 101–115

    Chapter  Google Scholar 

  • Henrichs SM, Farrington JW, Lee C (1984) Peru upwelling region sediments near 15° S. 2. Dissolved free and total hydrolyzable amino acids. Limnol Oceanogr 29:20–34

    Article  CAS  Google Scholar 

  • Kaneda T (1991) Iso and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    CAS  Google Scholar 

  • Kawamura K, Ishiwatari R, Yamazaki M (1980) Identification of polyunsaturated fatty acids in surface lacustrine sediments. Chem Geol 28:31–39

    Article  CAS  Google Scholar 

  • Keil RG, Cowie GL (1999) Organic matter preservation through the oxygen deficient zone of the NE Arabian Sea as discerned by organic carbon:mineral surface area ratios. Mar Geol 161:12–22

    Article  Google Scholar 

  • Keil RG, Montluçon DB, Prahl FG, Hedges JI (1994a) Sorptive preservation of labile organic matter in marine sediments. Nature 370:549–552

    Article  Google Scholar 

  • Keil RG, Tsamakis E, Fuh CB, Giddings JC, Hedges JI (1994b) Mineralogical and textural controls on organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT fractionation. Geochim Cosmochim Acta 57:879–893

    Article  Google Scholar 

  • Keil RG, Hu FS, Tsamakis E, Hedges JI (1994c) Pollen degradation in marine sediments as an indicator of oxidation of organic matter. Nature 369:639–641

    Article  CAS  Google Scholar 

  • Keil RG, Tsamakis E, Giddings JC, Hedges JI (1998) Biochemical distribution (amino acids, neutral sugars and lignin phenols) among size classes of modern marine sediments from the Washington coast. Geochim Cosmochim Acta 62:1347–1364

    Article  CAS  Google Scholar 

  • Klok J, Baas M, Cox HC, Leeuw JW de, Rijpstra WIC, Schenck PA (1984) Loliolides and dihydroactinidiolides in a recent marine sediment probably indicate a major transformation pathway of carotenoids. Tetra Lett 1984:5577–5580

    Article  Google Scholar 

  • Lee C (1992) Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim Cosmochim Acta 56:3323–3335

    Article  CAS  Google Scholar 

  • Leeuw JW de, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry — principles and applications. Plenum Press, New York, pp 23–72

    Chapter  Google Scholar 

  • Mayer L M (1993) Organic matter at the sediment-water interface. In: Engel MH, Macko SA (eds) Organic geochemistry — principles and applications. Plenum Press, New York, pp 171–184

    Chapter  Google Scholar 

  • Mayer LM (1994a) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim Cosmochim Acta 58:1271–1284

    Article  CAS  Google Scholar 

  • Mayer LM (1994b) Relationships between mineral surface and organic carbon concentrations in soils and sediments. Chem Geol 114:347–363

    Article  CAS  Google Scholar 

  • Mayer LM (1999) Extent of coverage of mineral surface by organic matter in marine sediments. Geochim Cosmochim Acta 63:207–215

    Article  CAS  Google Scholar 

  • Müller PJ, Suess E (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans I. Organic carbon preservation. Deep-Sea Res 26:1347–1362

    Article  Google Scholar 

  • Nishimura M (1978) Geochemical characteristics of the high reduction zone of stenols in Suwa sediments and the environmental factors controlling the conversion of stenols into stanols. Geochim Cosmochim Acta 42:349–357

    Article  CAS  Google Scholar 

  • Nishimura M, Koyama T (1977) The occurrence of stanols in various living organisms and the behaviour of sterols in contemporary sediments. Geochim Cosmochim Acta 41:379–385

    Article  CAS  Google Scholar 

  • Paropkari AL, Prakash Babu C, Mascarenhas A (1992) A critical evaluation of depositional parameters controlling the variability of organic matter in Arabian Sea sediments. Mar Geol 107:213–226

    Article  CAS  Google Scholar 

  • Perry GA, Volkman JK, Johns RB (1979) Fatty acids of bacterial origin in contemporary marine sediments. Geochim Cosmochim Acta 43:1715–1725

    Article  CAS  Google Scholar 

  • Ransom B, Bennett RH, Baerwald R, Shea K (1997) TEM study of in situ organic matter on continental margins: occurrence and the “monolayer” hypothesis. Mar Geol 138:1–9

    Article  CAS  Google Scholar 

  • Ransom B, Kim D, Kastner M, Wainwright S (1998) Organic matter preservation on continental slopes: Importance of mineralogy and surface area. Geochim Cosmochim Acta 62:1329–1345

    Article  CAS  Google Scholar 

  • Repeta DJ (1989) Carotenoid diagenesis in recent marine sediments: II. Degradation of fucoxanthin to loliolide. Geochim Cosmochim Acta 53:699–707

    Article  CAS  Google Scholar 

  • Rhodes DC (1974) Organism-sediment relations on the muddy sea floor. In: Barnes H (ed) Annual reviews of oceanography and marine biology. George Allen and Unwin, London, pp 263–300

    Google Scholar 

  • Skopintsev BA (1981) Decomposition of organic matter of plankton, humification and hydrolysis. In: Duursma EK, Dawson RA (eds) Marine organic chemistry. Elsevier, New York, pp 125–177

    Google Scholar 

  • Sun M-Y, Wakeham SG (1994) Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea basin. Geochim Cosmochim Acta 58:395–3406

    Article  Google Scholar 

  • Tegelaar EW, Leeuw JW de, Derenne S, Largeau C (1989) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53:3103–3106

    Article  CAS  Google Scholar 

  • Wakeham SG (1995) Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean. Deep-Sea Res 42:1749–1771

    Article  CAS  Google Scholar 

  • Wakeham SG, Gagosian RB, Farrington JW, Canuel EA (1984) Sterenes in suspended particulate matter in the eastern tropical North Pacific. Nature 308:840–843

    Article  CAS  Google Scholar 

  • Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson ML (1997) Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta 61:5363–5369

    Article  CAS  Google Scholar 

  • Wang X-C, Lee C (1993) Adsorption and desorption of aliphatic amines, amino acids, and acetate by clay minerals and marine sediments. Mar Chem 44:1–23

    Article  CAS  Google Scholar 

  • Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol Oceanogr 29:236–249

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wakeham, S. (2002). Diagenesis of Organic Matter at the Water-Sediment Interface. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds) Chemistry of Marine Water and Sediments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04935-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04935-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07559-9

  • Online ISBN: 978-3-662-04935-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics