Skip to main content

Stress Echocardiography Versus Cardiac Magnetic Resonance Imaging

  • Chapter
Stress Echocardiography
  • 90 Accesses

Abstract

Recently, cardiovascular magnetic resonance (CMR) imaging has emerged as a new noninvasive imaging modality providing high-resolution images in any desired plane of the heart, combined with the potential to assess and monitor regional left and right ventricular function [1]. Moreover, the tremendously improved temporal resolution of new fast-gradient echo CMR sequences such as TrueFISP, FFE or FIESTA makes it possible to capture cine loops displaying the beating heart, allowing the quantification of wall motion as well as of end-diastolic and end-systolic still frames, with well-defined endocardial and epicardial borders, making the quantification of chamber volumes and myocardial wall thickness easy [1]. This explains the development of a number of CMR stress techniques, which compete against stress echocardiography for the evaluation of reversible myocardial ischemia and postischemic myocardial viability in the clinical routine. Furthermore, new CMR methods assessing ischemia or myocardial viability by perfusion and late contrast enhancement MR imaging have recently been established. These new techniques not only use the setting of a stress test but also compete with stress echocardiography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sechtem U, Baer FM, Voth E, et al (1996) Assessment of viability by MR-techniques. Kluwer, Dordrecht, pp 211–236

    Google Scholar 

  2. Sechtem U, Sommerhoff BA, Markiewicz W, et al (1987) Regional left ventricular wall thickening by magnetic resonance imaging: evaluation in normal persons and patients with global and regional dysfunction. Am J Cardiol 59:145–151

    Article  PubMed  CAS  Google Scholar 

  3. Stollfuss JC, Haas F, Matsunari I, et al (1998) Regional myocardial wall thickening and global ejection fraction in patients with low angiographic left ventricular ejection fraction assessed by visual and quantitative resting ECG-gated 99mTc-tetrofosmin single-photon emission tomography and magnetic resonance imaging. Eur J Nucl Med 25:522–530

    Article  PubMed  CAS  Google Scholar 

  4. Penneil DJ, Underwood SR, Manzara CC, et al (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40

    Article  Google Scholar 

  5. Baer FM, Voth E, Theissen P, et al (1994) Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J 15:218–225

    PubMed  CAS  Google Scholar 

  6. Van Rugge FP, van der Wall EE, Spanjersberg SJ, et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 90:127–138

    Article  PubMed  Google Scholar 

  7. Geleijnse ML, Fioretti PM, Roelandt JR (1997) Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography. J Am Coll Cardiol 30:595–606

    Article  PubMed  CAS  Google Scholar 

  8. Hundley WG, Hamilton CA, Thomas MS, et al (1999) Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 100:1697–1702

    Article  PubMed  CAS  Google Scholar 

  9. Van Dijkman PR, Kuijpers DA, Blom BM et al (2002) Dobutamine stress magnetic resonance imaging: A valuable method in the noninvasive diagnosis of ischemic heart disease. J Electrocardiol 35:57–9

    Article  PubMed  Google Scholar 

  10. Nagel E, Lehmkuhl HB, Bocksch W, et al (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770

    Article  PubMed  CAS  Google Scholar 

  11. Chien D, Merboldt KD, Hanicke W, et al (1990) Advances in cardiac applications of subsecond flash MRI. Magn Reson Imaging 8:829–836

    Article  PubMed  CAS  Google Scholar 

  12. Atkinson DJ, Burstein D, Edelman RR (1990) First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 174:757–762

    PubMed  CAS  Google Scholar 

  13. Van Rugge FP, van der Wall EE, van Dijkman PR, et al (1992) Usefulness of ultrafast magnetic resonance imaging in healed myocardial infarction. Am J Cardiol 70:1233–1237

    Article  PubMed  Google Scholar 

  14. Wendland MF, Saeed M, Masui T, et al (1993) Echo-planar MR imaging of normal and ischemic myocardium with gadodiamide injection. Radiology 186:535–542

    PubMed  CAS  Google Scholar 

  15. Edelman RR, Li W (1994) Contrast-enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology 190:771–777

    PubMed  CAS  Google Scholar 

  16. Miller DD, Holmvang G, Gill JB, et al (1989) MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn Reson Med 10:246–255

    Article  PubMed  CAS  Google Scholar 

  17. Schaefer S, Lange RA, Gutekunst DP, et al (1991) Contrast-enhanced magnetic resonance imaging of hypoperfused myocardium. Invest Radiol 26:551–556

    Article  PubMed  CAS  Google Scholar 

  18. Eichenberger AC, Schuiki E, Kochli VD, et al (1994) Ischemic heart disease: assessment with gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imaging 4:425–431

    Article  PubMed  CAS  Google Scholar 

  19. Hartnell G, Cerei A, Kamalesh M, et al (1994) Detection of myocardial ischemia: value of combined myocardial perfusion and cineangiographic MR imaging. AJR Am J Roentgenol 163:1061–1067

    Article  PubMed  CAS  Google Scholar 

  20. Klein MA, Collier BD, Hellman RS, et al (1993) Detection of chronic coronary artery disease: value of pharmacologically stressed, dynamically enhanced turbo-fast low-angle shot MR images. Am J Roentgenol 161:257–263

    Article  CAS  Google Scholar 

  21. Lauerma K, Virtanen KS, Sipila LM, et al (1997) Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 96:2859–2867

    Article  PubMed  CAS  Google Scholar 

  22. Manning WJ, Atkinson DJ, Grossman W, et al (1991) First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 18:959–965

    Article  PubMed  CAS  Google Scholar 

  23. Matheijssen NA, Louwerenburg HW, van Rugge FP, et al (1996) Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole Sesta MIBI SPECT for detection of perfusion abnormalities in patients with one-vessel coronary artery disease: assessment by quantitative model fitting. Magn Reson Med 35:221–228

    Article  PubMed  CAS  Google Scholar 

  24. Walsh EG, Doyle M, Lawson MA, et al (1995) Multislice first-pass myocardial perfusion imaging on a conventional clinical scanner. Magn Reson Med 34:39–47

    Article  PubMed  CAS  Google Scholar 

  25. Sensky PR, Samani NJ, Reek C et al (2002) Magnetic resonance perfusion imaging in patients with coronary artery disease: a qualitative approach. Int J Cardiovasc Imaging 18:373–8

    Article  PubMed  Google Scholar 

  26. Al-Saadi N, Nagel E, Gross M, et al (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383

    Article  PubMed  CAS  Google Scholar 

  27. Nagel E, al-Saadi N, Fleck E (2000) Cardiovascular magnetic resonance: myocardial perfusion. Herz 25:409–16

    Article  PubMed  CAS  Google Scholar 

  28. Al-Saadi N, Nagel E, Gross M, et al (2000) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 36:1557–1564

    Article  PubMed  CAS  Google Scholar 

  29. Demer LL, Gould KL, Goldstein RA, et al (1989) Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 79:825–835

    Article  PubMed  CAS  Google Scholar 

  30. Go RT, Marwick TH, MacIntyre WJ, et al (1990) A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 31:1899–1905

    PubMed  CAS  Google Scholar 

  31. Muzik O, Duvernoy C, Beanlands RS, et al (1998) Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 31:534–540

    Article  PubMed  CAS  Google Scholar 

  32. Schwaiger M (1994) Myocardial perfusion imaging with PET. J Nucl Med 35:693–698

    PubMed  CAS  Google Scholar 

  33. Simone GL, Mullani NA, Page DA, et al (1992) Utilization statistics and diagnostic accuracy of a nonhospital-based positron emission tomography center for the detection of coronary artery disease using rubidium-82. Am J Physiol Imaging 7:203–209

    PubMed  CAS  Google Scholar 

  34. Williams BR, Mullani NA, Jansen DE, et al (1994) A retrospective study of the diagnostic accuracy of a community hospital-based PET center for the detection of coronary artery disease using rubidium-82. J Nucl Med 35:1586–1592

    PubMed  CAS  Google Scholar 

  35. Mallory GK, White PD, Salcedo-Galger J (1939) The speed of healing of myocardial infarction: a study of the pathologic anatomy in 72 cases. Am Heart J 18:647–671

    Article  Google Scholar 

  36. Dubnow MH, Burchell HB, Titus JL (1965) Postinfarction left ventricular aneurysm. A clini-comorphologic and electrocardiographic study of 80 cases. Am Heart J 70:753–760

    Article  PubMed  CAS  Google Scholar 

  37. Perrone-Filardi P, Bacharach SL, Dilsizian V, et al (1992) Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic ischaemic left ventricular dysfunction. J Am Coll Cardiol 20:161–168

    Article  PubMed  CAS  Google Scholar 

  38. Lawson MA, Johnson LL, Coghlan L, et al (1997) Correlation of thallium uptake with left ventricular wall thickness by cine magnetic resonance imaging in patients with acute and healed myocardial infarcts. Am J Cardiol 80:434–441

    Article  PubMed  CAS  Google Scholar 

  39. Pirolo JS, Hutchins GM, Moore GW (1986) Infarct expansion: pathologic analysis of 204 patients with a single myocardial infarct. J Am Coll Cardiol 7:349–354

    Article  PubMed  CAS  Google Scholar 

  40. Ito H, Maruyama A, Iwakura K, et al (1996) Clinical implications of the ‘no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93:223–228

    Article  PubMed  CAS  Google Scholar 

  41. Dendale P, Franken PR, van der Wall EE, et al (1997) Wall thickening at rest and contractile reserve early after myocardial infarction: correlation with myocardial perfusion and metabolism. Coron Artery Dis 8:259–264

    Article  PubMed  CAS  Google Scholar 

  42. Dendale PA, Franken PR, Waldman GJ, et al (1995) Low-dosage dobutamine magnetic resonance imaging as an alternative to echocardiography in the detection of viable myocardium after acute infarction. Am Heart J 130:134–140

    Article  PubMed  CAS  Google Scholar 

  43. Sandstede JJ, Bertsch G, Beer M, et al (1999) Detection of myocardial viability by low-dose dobutamine cine MR imaging. Magn Reson Imaging 17:1437–1443

    Article  PubMed  CAS  Google Scholar 

  44. Dendale P, Franken PR, Holman E, et al (1998) Validation of low-dose dobutamine magnetic resonance imaging for assessment of myocardial viability after infarction by serial imaging. Am J Cardiol 82:375–377

    Article  PubMed  CAS  Google Scholar 

  45. Baer FM, Smolarz K, Jungehulsing M, et al (1992) Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile SPECT. Am Heart J 123:636–645

    Article  PubMed  CAS  Google Scholar 

  46. Baer FM, Voth E, LaRosee K, et al (1996) Comparison of dobutamine transesophageal echocardiography and dobutamine magnetic resonance imaging for detection of residual myocardial viability. Am J Cardiol 78:415–419

    Article  PubMed  CAS  Google Scholar 

  47. Rehr RB, Peshock RM, Malloy CR, et al (1986) Improved in vivo magnetic resonance imaging of acute myocardial infarction after intravenous paramagnetic contrast agent administration. Am J Cardiol 57:864–868

    Article  PubMed  CAS  Google Scholar 

  48. Peshock RM, Malloy CR, Buja LM, et al (1986) Magnetic resonance imaging of acute myocardial infarction: gadolinium diethylenetriamine pentaacetic acid as a marker of reperfusion. Circulation 74:1434–1440

    Article  PubMed  CAS  Google Scholar 

  49. Van Rossum AC, Visser FC, Van Eenige MJ, et al (1990) Value of gadolinium-diethylene-tri-amine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am J Cardiol 65:845–851

    Article  PubMed  Google Scholar 

  50. Van der Wall EE, van Dijkman PR, de Roos A, et al (1990) Diagnostic significance of gadolin-ium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion. Br Heart J 63:12–17

    Article  PubMed  Google Scholar 

  51. De Roos A, van Rossum AC, van der Wall E, et al (1989) Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA-enhanced MR imaging. Radiology 172:717–720

    PubMed  Google Scholar 

  52. Lima JA, Judd RM, Bazille A, et al (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92:1117–1125

    Article  PubMed  CAS  Google Scholar 

  53. Judd RM, Lugo-Olivieri CH, Arai M, et al (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    Article  PubMed  CAS  Google Scholar 

  54. Nishimura T, Yamada Y, Hayashi M, et al (1989) Determination of infarct size of acute myocardial infarction in dogs by magnetic resonance imaging and gadolinium-DTPA: comparison with indium-111 antimyosin imaging. Am J Physiol Imaging 4:83–88

    PubMed  CAS  Google Scholar 

  55. Eichstaedt HW, Felix R, Dougherty FC, et al (1986) Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 9:527–535

    Article  PubMed  CAS  Google Scholar 

  56. Pereira RS, Prato FS, Wisenberg G, et al (1996) The determination of myocardial viability using Gd-DTPA in a canine model of acute myocardial ischemia and reperfusion. Magn Reson Med 36:684–693

    Article  PubMed  CAS  Google Scholar 

  57. Saeed M, Wendland MF, Masui T, et al (1993) Dual mechanisms for change in myocardial signal intensity by means of a single MR contrast medium — dependence on concentration and pulse sequence. Radiology 186:175–182

    PubMed  CAS  Google Scholar 

  58. Schaeffer S, Malloy CR, Katz J (1988) Gadolinium-DTPA-enhanced nuclear magnetic resonance imaging of reperfused myocardium identification of the myocardial bed at risk. J Am Coll Cardiol 12:1064–1072

    Article  Google Scholar 

  59. Mahrholdt H, Wagner A, Judd RM, Sechtem U (2002) Assessment of myocardial viability by cardiovascular magnetic resonance imaging (review). Eur Heart J 23:602–61959.

    Article  PubMed  CAS  Google Scholar 

  60. Jennings RB, Schaper J, Hill ML, et al (1985) Effect of reperfusion late in the phase of reversible ischaemic injury. Changes in cell volume, electrolytes, metabolites, and ultra-structure. Circ Res 56:262–278

    Article  PubMed  CAS  Google Scholar 

  61. Whalen DA, Hamilton DG, Ganote CE, et al (1974) Effect of a transient period of ischemia on myocardial cells. Effects on cell volume regulation. Am J Pathol 74:381–397

    PubMed  CAS  Google Scholar 

  62. Kim RJ, Fieno DS, Parrish TB, et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    Article  PubMed  CAS  Google Scholar 

  63. Koenig SH, Spiller M, Brown RD 3rd, et al (1986) Relaxation of water protons in the intra- and extracellular regions of blood containing Gd(DTPA). Magn Reson Med 3:791–795

    Article  PubMed  CAS  Google Scholar 

  64. Weinmann HJ, Brasch RC, Press WR, et al (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624

    Article  CAS  Google Scholar 

  65. Fieno DS, Kim RJ, Chen EL, et al (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36:1985–1991

    Article  PubMed  CAS  Google Scholar 

  66. Wu E, Judd RM, Vargas JD, et al (2001) Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28

    Article  PubMed  CAS  Google Scholar 

  67. Edelman RR, Wallner B, Singer A, et al (1990) Segmented turboFLASH: method for breath-hold MR imaging of the liver with flexible contrast. Radiology 177:515–521

    PubMed  CAS  Google Scholar 

  68. Simonetti OP, Kim RJ, Fieno DS, et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    PubMed  CAS  Google Scholar 

  69. Mahrholdt H, Wagner A, Holly T, et al (2002) Reproducibility of infarct size measurements by contrast-enhanced magnetic resonance imaging. Circulation 106:2322–2327

    Article  PubMed  CAS  Google Scholar 

  70. De Roos A, van Rossum AC, van der Wall E, et al (1989) Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA-enhanced MR imaging. Radiology 172:717–720

    PubMed  Google Scholar 

  71. Eichstaedt HW, Felix R, Danne O, et al (1989) Imaging of acute myocardial infarction by magnetic resonance tomography (MRT) using the paramagnetic relaxation substance gadolin-ium-DTPA. Cardiovasc Drugs Ther 3:779–788

    Article  PubMed  CAS  Google Scholar 

  72. Lima JA, Judd RM, Bazille A, et al (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92:1117–1125

    Article  PubMed  CAS  Google Scholar 

  73. Van Rossum AC, Visser FC, Van Eenige MJ, et al (1990) Value of gadolinium-diethylene-triamine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am J Cardiol 65:845–851

    Article  PubMed  Google Scholar 

  74. Kim RJ, Wu E, Rafael A, et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  75. Ricciardi MJ, Wu E, Davidson CJ, et al (2001) Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 103:2780–2783

    Article  PubMed  CAS  Google Scholar 

  76. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–9

    Article  PubMed  Google Scholar 

  77. Mahrholdt H, Wagner A, Geissler A, Sechtem U (2002) Diagnosis of myocardial infarction and myocardial viability using contrast-enhanced magnetic resonance imaging (review). Dtsch Med Wochenschr 7:1264–1271

    Article  Google Scholar 

  78. Klein C, Nekolla SG, Bengel FM, et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  79. Maes A, Flameng W, Nuyts J, et al (1994) Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 90:735–745

    Article  PubMed  CAS  Google Scholar 

  80. Dakik HA, Howell JF, Lawrie GM, et al (1997) Assessment of myocardial viability with 99mTc-Sesta MIBI tomography before coronary bypass graft surgery: correlation with histopathol-ogy and postoperative improvement in cardiac function. Circulation 96:2892–2898

    Article  PubMed  CAS  Google Scholar 

  81. Hundley WG, Morgan TM, Neagle CM et al (2002) Magnetic resonance imaging determination of cardiac prognosis. Circulation 106:2328–33

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahrholdt, H., Wagner, A., Judd, R.M., Sechtem, U. (2003). Stress Echocardiography Versus Cardiac Magnetic Resonance Imaging. In: Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05096-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05096-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05098-9

  • Online ISBN: 978-3-662-05096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics