Skip to main content

Pathogenetic Mechanisms of Stress

  • Chapter
Stress Echocardiography

Abstract

For a rational use of stress tests and an appropriate interpretation of their results, it may be useful to adopt a pathogenetic classification, taking into account the diagnostic end point of the test. Tests inducing vasospasm (ergonovine infusion and hyperventilation) explore the functional component. Tests trying to unmask coronary stenosis (exercise, dipyridamole, adenosine, dobutamine, pacing) mostly explore the ceiling of coronary reserve as defined by organic factors (Fig. 1). Some of these stressors (such as exercise) may also induce variations in coronary tone which can be superimposed onto the organic factors, thus blurring the correlation between coronary anatomy and test positivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–75

    Article  PubMed  CAS  Google Scholar 

  2. Feigl EO (1987) The paradox of adrenergic coronary vasoconstriction. Circulation 76:737–745

    Article  PubMed  CAS  Google Scholar 

  3. Kawano H, Fujii H, Motoyama T, et al (2000) Myocardial ischemia due to coronary artery spasm during dobutamine stress echocardiography. Am J Cardiol 85:26–30

    Article  PubMed  CAS  Google Scholar 

  4. Roffi M, Meier B, Allemann Y (2000) Angiographic documented coronary arterial spasm in absence of critical coronary artery stenoses in a patient with variant angina episodes during exercise and dobutamine stress echocardiography. Heart 83:E4

    Article  Google Scholar 

  5. Picano E, Lattanzi F, Masini M, et al (1988) Aminophylline termination of dipyridamole stress as a trigger of coronary vasospasm in variant angina. Am J Cardiol 62:694–697

    Article  PubMed  CAS  Google Scholar 

  6. Ruffolo RR Jr, Spradlin TA, Pollock GD, et al (1981) Alpha- and β-adrenergic effects of the stereoisomers of dobutamine J Pharmacol Exp Ther 219:447–452

    PubMed  CAS  Google Scholar 

  7. Fredholm BB, Abbracchio MP, Burnstock G, et al (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156

    PubMed  CAS  Google Scholar 

  8. Verani MS (1991) Adenosine thallium 201 myocardial perfusion scintigraphy. Am Heart J 122:269–278

    Article  PubMed  CAS  Google Scholar 

  9. Ross J Jr (1972) Factors regulating the oxygen consumption of the heart. In: Russek HI, Zoham BL (eds) Changing concepts in cardiovascular disease. Williams and Wilkins, Baltimore, pp 20–31

    Google Scholar 

  10. Picano E, Simonetti I, Carpeggiani C, et al (1989) Regional and global biventricular function during dipyridamole stress testing. Am J Cardiol 63:429–432

    Article  PubMed  CAS  Google Scholar 

  11. Beleslin BD, Ostojic M, Stepanovic J, et al (1994) Stress echocardiography in the detection of myocardial ischemia. Head-to-head comparison of exercise, dobutamine, and dipyridamole tests. Circulation 90:1168–1176

    Article  PubMed  CAS  Google Scholar 

  12. Picano E (2002) Dipyridamole in myocardial ischemia: Good Samaritan or Terminator? Int J Cardiol 83:215–216

    Article  Google Scholar 

  13. McNeill AJ, Fioretti PM, el-Said SM, et al (1992) Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine stress echocardiography. Am J Cardiol 70:41–46

    Article  PubMed  CAS  Google Scholar 

  14. Picano E, Pingitore A, Conti U, et al (1993) Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography. Eur Heart J 14:1216–1222

    Article  PubMed  CAS  Google Scholar 

  15. Picano E (1989) Dipyridamole-echocardiography test: historical background and physiologic basis. Eur Heart J 10:365–376

    PubMed  CAS  Google Scholar 

  16. Bove AA, Santamore WP, Carey RA (1983) Reduced myocardial blood flow resulting from dynamic changes in coronary artery stenosis. Int J Cardiol 4:301–317

    Article  PubMed  CAS  Google Scholar 

  17. Guyton RA, McClenathan JH, Newman GE, et al (1977) Significance of subendocardial S-T segment elevation caused by coronary stenosis in the dog. Epicardial S-T segment depression, local ischemia and subsequent necrosis. Am J Cardiol 40:373–380

    Article  PubMed  CAS  Google Scholar 

  18. Demer L, Gould KL, Kirkeeide R (1988) Assessing stenosis severity: coronary flow reserve, collateral function, quantitative coronary arteriography, positron imaging, and digital subtraction angiography. A review and analysis. Prog Cardiovasc Dis 30:307–322

    Article  PubMed  CAS  Google Scholar 

  19. Picano E, Lattanzi F (1991) Dipyridamole echocardiography. A new diagnostic window on coronary artery disease. Circulation 83:11119–26

    Google Scholar 

  20. Crea F, Pupita G, Galassi AR, et al (1989) Effect of theophylline on exercise-induced myocardial ischaemia. Lancet 1:683–686

    Article  PubMed  CAS  Google Scholar 

  21. Emdin M, Picano E, Lattanzi F, et al (1989) Improved exercise capacity with acute aminophylline administration in patients with syndrome X. J Am Coll Cardiol 14:1450–1453

    Article  PubMed  CAS  Google Scholar 

  22. Cannon RO 3rd (1989) Aminophylline for angina: the “Robin Hood” effect? J Am Coll Cardiol 14:1454–1455

    Article  PubMed  Google Scholar 

  23. Picano E, Pogliani M, Lattanzi F, et al (1989) Exercise capacity after acute aminophylline administration in angina pectoris. Am J Cardiol 63:14–16

    Article  PubMed  CAS  Google Scholar 

  24. Waltier DC, Ziwoloski M, Gross FJ, et al (1981) Redistribution of myocardial blood flow distal to a dynamic coronary artery stenosis by sympathomimetic amines. Am J Cardiol 48: 269–279

    Article  Google Scholar 

  25. Varga A, Preda I (1997) Pharmacological stress echocardiography for exercise independent assessment of anti-ischaemic therapy. Eur Heart J 18:180–181

    Article  PubMed  CAS  Google Scholar 

  26. Carstensen S, Ali SM, Stensgaard-Hansen FV, et al (1995) Dobutamine-atropine stress echocardiography in asymptomatic healthy individuals. The relativity of stress-induced hyperkinesia. Circulation 92:3453–3463

    Article  PubMed  CAS  Google Scholar 

  27. Hammond HK, McKirnan D (1994) Effects of dobutamine and arbutamine on regional myocardial function in a porcine model of myocardial ischemia. J Am Coll Cardiol 23:475–482

    Article  PubMed  CAS  Google Scholar 

  28. Glover DK, Ruiz M, Yang JY, et al (1996) Pharmacological stress thallium scintigraphy with 2-cyclohexylmethylidenehydrazinoadenosine (WRC-0470). A novel, short-acting adenosine A2A receptor agonist. Circulation 94:1726–1732

    Article  PubMed  CAS  Google Scholar 

  29. Brown JH (1992) Atropine, scopolamine and related antimuscarinic drugs. In: Goodman A, Gilman G (eds) The pharmacologic basis of therapeutics, 8th edn, voli. McGraw Hill, New York, pp 150–165

    Google Scholar 

  30. Miyazono Y, Kisanuki A, Toyonaga K, et al (1998) Usefulness of adenosine triphosphate-atropine stress echocardiography for detecting coronary artery stenosis. Am J Cardiol 82:290–294

    Article  PubMed  CAS  Google Scholar 

  31. Attenhofer CH, Pellikka PA, Roger VL, et al (2000) Impact of atropine injection on heart rate response during treadmill exercise echocardiography: a double-blind randomized pilot study. Echocardiography 17:221–227

    Article  PubMed  CAS  Google Scholar 

  32. Banerjee S, Yalamanchili VS, Abdul-Baki T, et al (2002) Use of atropine to maintain higher heart rate after exercise during treadmill stress echocardiography. J Am Soc Echocardiogr 15:43–45

    Article  PubMed  Google Scholar 

  33. Nedeljkovic MA, Ostojic M, Beleslin B, et al (2001) Dipyridamole-atropine-induced myocardial infarction in a patient with patent epicardial coronary arteries. Herz 26:485–488

    Article  PubMed  CAS  Google Scholar 

  34. Erdogan O, Altun A, Akdemi O, et al (2001) Unexpected occurrence of ST segment elevation during administration of intravenous atropine. Cardiovasc Drugs Ther 15:367–368

    Article  PubMed  CAS  Google Scholar 

  35. Mathias W Jr, Arruda A, Santos FC, et al (1999) Safety of dobutamine-atropine stress echocardiography: a prospective experience of 4,033 consecutive studies. J Am Soc Echocardiogr 12:785–791

    Article  PubMed  Google Scholar 

  36. Picano E, Lattanzi F, Masini M, et al (1988) Usefulness of the dipyridamole-exercise echocardiography test for diagnosis of coronary artery disease. Am J Cardiol 62:67–70

    Article  PubMed  CAS  Google Scholar 

  37. Ostojic M, Picano E, Beleslin B, et al (1994) Dipyridamole-dobutamine echocardiography: a novel test for the detection of milder forms of coronary artery disease. J Am Coll Cardiol 23:1115–1122

    Article  PubMed  CAS  Google Scholar 

  38. Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111

    Article  PubMed  CAS  Google Scholar 

  39. Rigo F, Richieri M, Pasanisi E et al (2003) Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol 91:269–73

    Article  PubMed  Google Scholar 

  40. Nohtomi Y, Takeuchi M, Nagasawa K, et al (2003) Simultaneous assessment of wall motion and coronary flow velocity in the left anterior descending coronary artery during dipyridamole stress echocardiography. J Am Soc Echo 17:457–463

    Article  Google Scholar 

  41. Lowenstein J, Tiano C, Marquez G, et al (2003) Simultaneous analysis of wall motion and coronary flow reserve of the left anterior descending coronary artery by transthoracic Doppler echocardiography during dipyridamole stress. J Am Soc Echo 17:735–744

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picano, E. (2003). Pathogenetic Mechanisms of Stress. In: Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05096-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05096-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05098-9

  • Online ISBN: 978-3-662-05096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics