Skip to main content

Emiliania huxleyi: bloom observations and the conditions that induce them

  • Chapter
Coccolithophores

Summary

Most of what is known about the distribution of blooms of Emiliania huxleyi comes from satellite evidence. However, patches of bright water in satellite images are not always E. huxleyi blooms and satellite evidence needs to be verified by in situ sampling in the area. In this article we firstly describe the observational evidence for these blooms in various regions of the global ocean, and then proceed to describe mimicking conditions: the occasional bright waters that are not E. huxleyi blooms. In the second part of this article we discuss the possible causes of the E. huxleyi blooms. We review the various hypotheses concerning the water conditions required to generate these blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksnes DL, Egge JK, Rosland R, Heimdal BR (1994) Representation of Emiliania huxleyi in phytoplankton simulation models: a first approach. Sarsia 79: 291–300

    Google Scholar 

  • Archer D, Winguth A, Lea D, Mahowald N (2000) What caused the glacial/interglacial atmospheric pC02 cycles? Rev Geophys 38: 159–189

    Article  Google Scholar 

  • Balch WM, Holligan PM, Ackleson SG, Voss KJ (1991) Biological and Optical-Properties of Mesoscale Coccolithophore Blooms in the Gulf of Maine. Limnol Oceanogr 36:629–643

    Article  Google Scholar 

  • Balch WM, Holligan PM, Kilpatrick KA (1992) Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi. Cont Shelf Res 12: 1353–1374

    Article  Google Scholar 

  • Barker S, Elderfield H (2002) Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297: 833–836

    Article  Google Scholar 

  • Baudini CL, Hyrenbach KD, Koyle KO, Pinchuk A, Mendenbell V, Hunt Jr GL (2001) Mass mortality of short-tailed shearwaters in the south-eastern Bering Sea during summer 1997. Fish Oceanogr 10: 117–130

    Article  Google Scholar 

  • Berge G (1962) Discolouration of the sea due to Coccolithus huxleyi “bloom”. Sarsia 6: 27–40

    Google Scholar 

  • Birkenes E, Braarud T (1952) Phytoplankton in the Oslo Fjord during a ‘Coccolithus huxeyi-summer’. Avh Nor Viden Akad Oslo 1952/2: 1–23

    Google Scholar 

  • Blackburn SI, Cresswell G (1993) A coccolithophorid bloom in Jervis Bay, Australia. Aust J Mar Fresh Res 44: 253–260

    Article  Google Scholar 

  • Brand LE (1994) Physiological ecology of marine coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 39–49

    Google Scholar 

  • Brand LE, Guillard RRL (1981) The Effects of Continuous Light and Light-Intensity on the Reproduction Rates of 22 Species of Marine-Phytoplankton. J Exp Mar Biol Ecol 50: 119–132

    Article  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol Oceanogr 28: 1182–1198

    Article  Google Scholar 

  • Bratbak G, Wilson W, Heldal M (1996) Viral control of Emiliania huxleyi blooms? J Mar Syst 9: 75–81

    Article  Google Scholar 

  • Brodeur RD, Sugisaky H, Hunt Jr. GL (2002) Increase in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233: 80–103

    Article  Google Scholar 

  • Broerse ATC, Tyrrell T, Young JR, Poulton AJ, Merico A, Balch WM, Miller PI (2003) The cause of bright waters in the Bering Sea in winter. Cont Shelf Res 23: 1579–1596

    Article  Google Scholar 

  • Brown CW, Yoder JA (1993) Blooms of Emiliania huxleyi (Prymnesiophyceae) in surface waters of the Nova Scotian Shelf and the Grand Bank. J Plankton Res 15: 1429–1438

    Article  Google Scholar 

  • Brown CW, Yoder JA (1994) Coccolithophorid Blooms in the Global Ocean. J Geophys Res-Oceans 99: 7467–7482

    Article  Google Scholar 

  • Burkill PH, Archer SD, Robinson C, Nightingale PD, Groom SB, Tarran GA, Zubkov MV (2002) Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep-Sea Res Part II-Top Stud Oceanogr 49: 2863–2885

    Article  Google Scholar 

  • Carlucci AF, Bowes PM (1970) Vitamin production and utilization by phytoplankton in mixed culture. J Phycol 6: 393–400

    Google Scholar 

  • Cokacar T, Kubilay N, Oguz T (2001) Structure of Emiliania huxleyi blooms in the Black Sea surface waters as detected by SeaWIFS imagery. Geophys Res Lett 28 (24): 4607–4610

    Article  Google Scholar 

  • Egge JK, Aksnes DL (1992) Silicate as Regulating Nutrient in Phytoplankton Competition. Mar Ecol-Prog Ser 83: 281–289

    Article  Google Scholar 

  • Egge JK, Heimdal BR (1994) Blooms of phytoplankton including Emiliania huxleyi (Haptophyta). Effects of nutrient supply in different N:P ratios. Sarsia 79: 333–348

    Google Scholar 

  • Fanning KA (1992) Nutrient provinces in the sea: concentration ratios, reaction rate ratios, and ideal covariation. J Geophys Res 97: 5693–5712

    Article  Google Scholar 

  • Fasham MJR, Balino BM, Bowles MC, Anderson R, Archer D, Bathmann U, Boyd P, Buesseler K, Burkill P, Bychkov A, Carlson C, Chen CTA, Doney S, Ducklow H, Emerson S, Feely R, Feldman G, Garcon V, Hansell D, Hanson R, Harrison P, Honjo S, Jeandel C, Karl D, Le Borgne R, Liu KK, Lochte K, Louanchi F, Lowry R, Michaels A, Monfray P, Murray J, Oschlies A, Platt T, Priddle J, Quinones R, Ruiz-Pino D, Saino T, Sakshaug E, Shimmield G, Smith S, Smith W, Takahashi T, Treguer P, Wallace D, Wanninkhof R, Watson A, Willebrand J, Wong CS (2001) A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). Ambio:4–31

    Google Scholar 

  • Fileman ES, Cummings DG, Llewellyn CA (2002) Microplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast. J Mar Biol Ass UK 82: 359–368

    Article  Google Scholar 

  • Findlay CS, Giraudeau J (2000) Extant calcareous nannoplankton in the Australian Sector of the Southern Ocean (austral summers 1994 and 1995) Mar Micropaleontol 40: 417–439

    Article  Google Scholar 

  • Furnas MJ (1990) In situ Growth-Rates of Marine-Phytoplankton – Approaches to Measurement, Community and Species Growth-Rates. J Plankton Res 12: 1117–1151

    Article  Google Scholar 

  • Garcia-Soto C, Fernandez E, Pingree RD, Harbour DS (1995) Evolution and Structure of a Shelf Coccolithophore Bloom in the Western English-Channel. J Plankton Res 17: 2011–2036

    Article  Google Scholar 

  • Hardy A (1956) The Open Sea, Pt. I. The World of Plankton. Collins, London

    Google Scholar 

  • Hay BJ, Arthur MA, Dean WE, Neff ED, Honjo S (1991) Sediment deposition in the Late Holocene abyssal Black Sea with climatic and chronological implications, Deep-Sea Res 38 (Suppl. 2): S1211–S1235

    Article  Google Scholar 

  • Head RN, Crawford DW, Egge JK, Harris RP, Kristiansen S, Lesley DJ, Maranon E, Pond D, Purdie DA (1998) The hydrography and biology of a bloom of the coccolithophorid Emiliania huxleyi in the northern North Sea. J Sea Res 39: 255–266

    Article  Google Scholar 

  • Holligan PM, Robertson JE (1996) Significance of ocean carbonate budgets for the global carbon cycle. Glob Change Biol 2: 85–95

    Article  Google Scholar 

  • Holligan PM, Viollier M, Harbour DS, Camus P, Champagnephilippe M (1983) Satellite and Ship Studies of Coccolithophore Production Along a Continental-Shelf Edge. Nature 304: 339–342

    Article  Google Scholar 

  • Holligan PM, Fernandez E, Aiken J, Balch WM, Burkill PH, Finch M, Groom SB, Malin G, Muller K, Purdie DA, Robinson C, Trees CC, Turner SM, Van der Wal P (1993a) A biogeochemical study of the coccolithophore Emiliania huxleyi in the north Atlantic. Global Biogeochem Cy 7: 879–900

    Article  Google Scholar 

  • Holligan PM, Groom SB, Harbour DS (1993b) What controls the distribution of the coccolithophore, Emiliania huxleyi, in the North Sea? Fish Oceanogr 2: 175–183

    Article  Google Scholar 

  • Humborg C, Ittekot V, Cociasu A, Bodungen BV (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388

    Article  Google Scholar 

  • Hunt Jr. GL, Stabeno PJ (2002) Climate change and the control of energy flow in the south eastern Bering Sea. Prog Oceanogr 55: 5–22

    Article  Google Scholar 

  • Iglesias-Rodriguez MD, Brown CW, Doney SC, Kleypas JA, Kolber D, Kolber Z, Hayes PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochem Cy 16: doi.10.1029/ 2001GB001454

    Article  Google Scholar 

  • Iida T, Saitoh SI, Miyamura T, Toratami M, Fukushima H, Shiga N (2002) Temporal and spatial variability of the coccolithophore blooms in the eastern Bering Sea, 1998–2001. Prog Oceanogr 55: 165–175

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999a) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284: 118–120

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999b) Environmental limits to coral reef development: where do we draw the line? Am Zool 39: 146–159

    Google Scholar 

  • Kristiansen S, Thingstad TF, Van der Wal P, Farbrot T, Skjoldal EF (1994) An Emiliania-Huxleyi Dominated Subsurface Bloom in Samnangerfjorden, Western Norway – Importance of Hydrography and Nutrients. Sarsia 79: 357–368

    Google Scholar 

  • Kuenzler EJ, Perras JP (1965) Phosphatases of marine algae. Biol Bull 128: 271–284

    Article  Google Scholar 

  • Lampert L, Queguiner B, Labasque T, Pichon A, Lebreton N (2002) Spatial variability of phytoplankton composition and biomass on the eastern continental shelf of the Bay of Biscay (north-east Atlantic Ocean). Evidence for a bloom of Emiliania huxleyi (Prymnesiophyceae) in spring 1998. Cont Shelf Res 22: 1225–1247

    Article  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cy 14: 639–654

    Article  Google Scholar 

  • Lohmann GP (1995) A Model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10: 445–457

    Article  Google Scholar 

  • Malin G, Turner S, Liss P, Holligan P, Harbour D (1993) Dimethylsulfide and Dimethyl-sulphoniopropionate in the Northeast Atlantic During the Summer Coccolithophore Bloom. Deep-Sea Res Part I-Oceanogr Res Pap 40: 1487–1508

    Article  Google Scholar 

  • Mankovsky VI, Vladimirov VL, Afonin EI, Mishonov AV, Solovev MV, Anninskiy BE, Georgieva LV, Yunev OA (1996) Long-term variability of the Black Sea water transparency and factors determining its strong decrease in the late 1980s, early 1990s: Sevastopol, Ukraine, Marine Hydrophysical Institute: 32

    Google Scholar 

  • Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol-Prog Ser 220: 153–162

    Article  Google Scholar 

  • Merico A, Tyrrell T, Brown CW, Groom SB, Miller PI (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. Geophys Res Lett 30: 1337 doi:10.1029/2002GL016648

    Article  Google Scholar 

  • Mihnea PE (1997) Major shifts in the phytoplankton community (1980–1994) in the Romanian Black Sea. Oceanol Acta 20: 119–129

    Google Scholar 

  • Murata A, Takizawa T (2002) Impact of a coccolithophorid bloom on the CO2 system in surface waters of the Bering Sea shelf. Geophys Res Lett 29

    Google Scholar 

  • Nanninga HJ, Tyrrell T (1996) Importance of light for the formation of algal blooms by Emiliania huxleyi. Mar Ecol-Prog Ser 136: 195–203

    Article  Google Scholar 

  • Olson MB, Strom SL (2002) Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into a formation and persistence of an Emiliania huxleyi bloom. Deep-Sea Res II 49: 5969–5990

    Google Scholar 

  • Opdyke BN, Wilkinson BH (1990) Paleolatitude distribution of Phanerozoic marine ooids and cements. Palaeogeog Palaeocl 78: 135–148

    Article  Google Scholar 

  • Oguz T, Malanotte-Rizzoli P, Ducklow HW (2001) Simulations of phytoplankton seasonal cycle with multi-level and multi-layer physical-eco system models: the Black Sea example. Ecol Model 144: 295–314

    Article  Google Scholar 

  • Paasche E (2002) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503–529

    Article  Google Scholar 

  • Paasche E, Klaveness D (1970) A physiological comparison of coccolith-forming and naked cells of Coccolithus huxleyi. Arch Mikrobiol 73: 143–152

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric C02. Nature 407: 364–367

    Article  Google Scholar 

  • Riegman R, Noordeloos AAM, Cadée GC (1992) Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar Biol 112: 479–484

    Article  Google Scholar 

  • Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J Phycol 36: 87–96

    Article  Google Scholar 

  • Robertson JE, Robinson C, Turner DR, Holligan PM, Watson AJ, Boyd P, Fernandez E, Finch M (1994) The Impact of a Coccolithophore Bloom on Oceanic Carbon Uptake in the Northeast Atlantic During Summer 1991. Deep-Sea Res Part I-Oceanogr Res Pap 41:297–314

    Article  Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390: 497–500

    Article  Google Scholar 

  • Stabeno PJ, Bond NA, Kachel NB, Saio SA, Schumacher JD (2001) On the temporal variability of the physical environment over the south eastern Bering Sea. Fish Oceanogr 10:81–98

    Article  Google Scholar 

  • Stolte W, Kraay GW, Noordeloos A AM, Riegman R (2000) Genetic and physiological variation in pigment composition of Emiliania huxleyi (Prymnesiophyceae) and the potential use of its pigment ratios as a quantitative physiological marker. J Phycol 36: 529–539

    Article  Google Scholar 

  • Sukhanova IN, Flint MV (1998) Anomalous blooming of coccolithophorids over the eastern Bering Sea shelf. Oceanology 38: 502–505

    Google Scholar 

  • Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. Journal Conseil International pour l’Exploration de la Mer 18: 287–295

    Article  Google Scholar 

  • Townsend DW, Keller MD, Holligan PM, Ackleson SG, Balch WM (1994) Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine. Cont Shelf Res 14: 979–1000

    Article  Google Scholar 

  • Tyrrell T, Taylor AH (1995) Latitudinal and Seasonal-Variations in Carbon-Dioxide and Oxygen in the Northeast Atlantic and the Effects on Emiliania Huxleyi and Other Phytoplankton. Global Biogeochem Cy 9: 585–604

    Article  Google Scholar 

  • Tyrrell T, Taylor AH (1996) A modelling study of Emiliania huxleyi in the NE Atlantic. J Mar Syst 9: 83–112

    Article  Google Scholar 

  • Tyrrell T, Holligan PM, Mobley CD (1999) Optical impacts of oceanic coccolithophore blooms. J Geophys Res-Oceans 104: 3223–3241

    Article  Google Scholar 

  • Van der Wal P, Kempers RS, Veldhuis MJW (1995) Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi. Mar Ecol-Prog Ser 126: 247–265

    Article  Google Scholar 

  • Weeks SJ, Currie B, Bakun A (2002) Satellite imaging — Massive emissions of toxic gas in the Atlantic. Nature 415: 493–494

    Article  Google Scholar 

  • Westbroek P, Brown CW, Van Bleijswijk JDL, Brownlee C, Brummer GJ, Conte M, Egge JK, Fernandez E, Jordan RW, Knappertsbusch M, Stefels J, Veldhuis MJW, Van der Wal P, Young J (1993) A model system approach to biological climate forcing: the example of Emiliania huxleyi. Global Planet Change 8: 27–46

    Article  Google Scholar 

  • Wilson WH, Tarran GA, Schroeder D, Cox M, Oke J, Malin G (2002) Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J Mar Biol Assoc UK 82: 369–377

    Article  Google Scholar 

  • Winter A, Jordan RW, Roth PH (1994) Biogeography of living coccolithophores in ocean waters. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 161–177

    Google Scholar 

  • Winter A, Elbrächter M, Krause G (1999) Subtropical coccolithophores in the Weddell Sea. Deep-Sea Res 146: 439–449

    Google Scholar 

  • Young JR (1994) Functions of coccoliths. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 63–82

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tyrrell, T., Merico, A. (2004). Emiliania huxleyi: bloom observations and the conditions that induce them. In: Thierstein, H.R., Young, J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06278-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06016-8

  • Online ISBN: 978-3-662-06278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics