Skip to main content

Struktur und Funktion der H+, K+-ATPase des Magens

  • Conference paper
Der Magen
  • 24 Accesses

Zusammenfassung

Die apikale Membran der Parietalzelle des Magens ist in hohem Maße darauf vorbereitet, ihrer hauptsächlichen physiologischen Funktion, nämlich der Sekretion von konzentrierter Salzsäure, nachzukommen. Dabei muß sie gleichzeitig der Zerstörung durch ihre eigenen, äußerst sauren Sekretionsprodukte widerstehen. Das wichtigste Protein in der apikalen Membran der sezernierenden Parietalzelle ist die Protonenpumpe H+, K+-ATPase. Dieses Membranprotein bildet nicht nur die Haupttriebkraft für die Entwicklung der HCL-Sekretion, dieses Enzym muß auch mit speziellen Eigenschaften ausgerüstet sein, die es Pepsin und H+-Ionen unmöglich machen, es zu zerstören.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Beesley RC, Forte JG (1973) Glycoproteins and glycolipids of oxyntic cell microsomes. I. Glycoproteins: carbohydrate composition, analytical and preparative fractionation. Biochim Biophy Acta 307: 372–85

    Article  CAS  Google Scholar 

  2. Callaghan JM, Toh BH, Pettitt JM, Humphris DC, Gleeson PA (1990) Poly-N-acetyllactosamine-specific tomato lectin interacts with gastric parietal cells. Identification of a tomato-lectin binding 60–90 x 10’ M membrane glycoprotein of tubulovesicles. J Cell Sci 95: 563–576

    PubMed  CAS  Google Scholar 

  3. Canfield VA, Levenson~R (1991) Structural organization and transcription of the mouse gastric H+, K+-ATPase beta subunit gene. Proc Natl Acad Sci USA 88: 8247–8251

    Google Scholar 

  4. Canfield VA, Okamoto CT, Chow D, Dorfman J, Gros P, Forte JG, Levenson R (1990) Cloning of the H, K-ATPase ß-subunit: tissue-specific expression, chromosomal assignment, and relationship to Na, K-ATPase ß-subunits. J Biol Chem 265: 19878–19884

    Google Scholar 

  5. Chow DC, Browning CM, Forte JG (1992) Gastric H, K-ATPase activity is inhibited by reduction of disulfide bonds in the ß-subunit. Am J Physiol (Cell Physiol 32 ) 263: C39 - C46

    Google Scholar 

  6. Creighton TE (1990) Protein folding. Biochem J 270: 1–16

    PubMed  CAS  Google Scholar 

  7. Eakle KA, Kim KS, Kabalin MA, Farley RA (1992) High-affinity ouabain binding by yeast cells expressing Na+, K+-ATPase alpha subunits and the gastric H K+-ATPase beta subunit. Proc Natl Acad Sci USA 89: 2834–2838

    Google Scholar 

  8. Forte JG, Ganser AL, Ray TK (1976) The K+-stimulated ATPase from oxyntic glands of gastric mucosa. In: Kasbekar DK, Sachs G, Rehm W (eds) Gastric Hydrogen Ion secretion. Dekker, New York, pp. 302–330

    Google Scholar 

  9. Forte JG, Soll A (1989) Cell biology of hydrochloric acid secretion. In: Forte JG (ed) Handbook of Physiology — The Gastrointestinal System, Volume III, Chapter 11. American Physiological Society, Bethesda, pp. 207–228

    Google Scholar 

  10. Gallagher JT, Morris A, Dexter TM (1985) Identification of two binding sites for wheat-germ agglutinin on polyactosamine-type oligosaccharides. Biochem J 231: 115–122

    PubMed  CAS  Google Scholar 

  11. Horisberger JD, Jaunin P, Reuben MA, Lasater LS, Chow DC, Forte JG, Sachs G, Rossier BC, Geering K (1991) The H, K-ATPase ß-subunit can act as a surrogate for the ß-subunit of the Na, K pump. J Biol Chem 26: 19131–19134

    Google Scholar 

  12. Inesi G, Kirtley MR (1992) Structural Features of Cation Transport ATPase. J Bioenerg Biomembr 24: 271–284

    PubMed  CAS  Google Scholar 

  13. Jaisser F, Canessa CM, Horisberger JD, Rossier BC (1992) Primary sequence and functional expression of a novel ouabain-resistant Na, K-ATPase. The beta subunit modulates potassium activation of the Na, K-pump. J Biol Chem 267: 16895–16903

    Google Scholar 

  14. Jorgensen PL, Andersell JP (1988) Structural basis for E1–E2 conformational transitions in Na, K-ATPase and Ca-ATPase. J Membrane Biol 103: 95–120

    Google Scholar 

  15. Kawamura M, Nagano K (1984) Evidence for essential disulfide bonds in the ß-subunit of (Na“, K+)-ATPase. Biochim Biophys Acta 774: 188–192

    Google Scholar 

  16. Kawamura M, Ohmizo K, Morohashi M, Nagano K (1985) Protective effect of Na +, and K + against inactivation of (Na ++K+)-ATPase by high concentrations of 2-mercaptoethanol at high temperatures. Biochim Biophys Acta 821: 115–120

    Google Scholar 

  17. Kirley TL (1989) Determination of three disulfide bonds and one free sulfhydryl in the ß-subunit of (Na, K)-ATPase. J Biol Chem 264: 7185–7192

    PubMed  CAS  Google Scholar 

  18. Kirley TL (1990) Inactivation of (Na +, K+)-ATPase by ß-mercaptoethanol. J Biol Chem 265: 4227–4232

    PubMed  CAS  Google Scholar 

  19. Kyte J (1972) Properties of 2 polypeptides of sodium-dependent and potassium-dependent adenosine-triphosphatase. J Biol Chem 247: 7642–7649

    PubMed  CAS  Google Scholar 

  20. Lingrel JB (1992) Na, K-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24: 263–270

    PubMed  CAS  Google Scholar 

  21. Ma JY, Song YH, Sjostrand SE, Rask L, Mardh, S (1991) cDNA cloning of the beta-subunit of the human gastric H,K-ATPase. Biochem Biophys Res Commun 180(1): 39–45

    Google Scholar 

  22. Okamoto CT, Forte JG (1988) Distribution of lectin-binding sites in oxyntic and chief cells of isolated rabbit gastric glands. Gastroenterology 95: 334–42

    PubMed  CAS  Google Scholar 

  23. Okamoto CT, Karpilow JM, Smolka A, Forte JG (1990) Isolation and characterization of gastric microsomal glycoproteins. Evidence for a glycosylated ß-subunit of the H+, K+-ATPase Biochim Biophys Acta 1037: 360–372

    Article  CAS  Google Scholar 

  24. Reuben MA, Lasater LS, Sachs G (1990) Characterization of a beta subunit of the gastric H+/K+-transporting ATPase. Proc Natl Acad Sci, USA. 87: 6767–6771

    Google Scholar 

  25. Sachs G, Kaunitz J, Mendlein J, Wallmark B (1989) Biochemistry of gastric acid secretion. In: Forte JG (ed) Handbook of Physiology — The Gastrointestinal System, Volume III, Chapter 12. American Physiological Society, Bethesda, pp. 229–254

    Google Scholar 

  26. Shull GE, Lingrel JB (1986) Molecular cloning of the rat stomach (Fr +K+)-ATPase. J Biol Chem 231: 16788–16791

    Google Scholar 

  27. Shull, GE (1990) cDNA cloning of the ß-subunit of the rat gastric H, K-ATPase. J Biol Chem 265: 12123–12126

    Google Scholar 

  28. Toh BH, Gleeson PA, Simpson RJ, Moritz RL, Callaghan JM, Goldkorn I, Jones CM, Martinelli TM, Mu FT, Humphris DC (1990) The 60- to 90-kDa parietal cell autoantigen associated with autoimmune gastritis is a beta subunit of the gastric H+/K+-ATPase (proton pump). Proc Natl Acad Sci, USA. 87: 6418–6422

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Forte, J.G., Chow, D.C. (1993). Struktur und Funktion der H+, K+-ATPase des Magens. In: Domschke, W., Konturek, S.J. (eds) Der Magen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06526-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06526-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56612-0

  • Online ISBN: 978-3-662-06526-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics