Skip to main content

Fundamentals of Growth Dynamics of the μ-Pulling Down Method

  • Chapter
Fiber Crystal Growth from the Melt

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 6))

Abstract

The growth dynamics of the μ-pulling down method are fully presented, focusing on the basic requirements for growth and on the solute distribution in the solid and melt during growth. The μ-PD method bears the differentiated solute transportation zones, i.e. the capillary and molten zones that characterize the effective partition coefficient with unity for the electrically neutral solute. A large temperature gradient near the interface is another attribute leading to an interface electric field that modifies the solute partitioning for ionic solutes in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Shimamura, S. Uda, T. Yamada, S. Sakaguchi, T. Fukuda, Jpn. J. Appl. Phys. 35 (1996) L793.

    Article  ADS  Google Scholar 

  2. R. S. Feigelson, J. Cryst. Growth 79 (1986) 669.

    Article  ADS  Google Scholar 

  3. T. Surek, B. Chalmers, J. Cryst. Growth 29 (1975) 1.

    Article  ADS  Google Scholar 

  4. V. A. Tatarchenko, J. Cryst. Growth 37 (1977) 272.

    Article  ADS  Google Scholar 

  5. D. H. Yoon, I. Yonenaga, T. Fukuda, N. Ohnishi, J. Crystal Growth 142 (1994) 339.

    Article  ADS  Google Scholar 

  6. D. H. Yoon, P. Rudolph, T. Fukuda, J. Crystal Growth 144 (1994) 207.

    Article  ADS  Google Scholar 

  7. N. Schäfer, T. Yamada, K. Shimamura, H. J. Koh, T. Fukuda, J. Crystal Growth 166 (1996) 675.

    Article  ADS  Google Scholar 

  8. H. J. Koh, N. Schäfer, K. Shimamura, T. Fukuda, J. Crystal Growth 167 (1996) 38.

    Article  ADS  Google Scholar 

  9. S. Uda, J. Kon, K. Shimamura, T. Fukuda, J. Cryst. Growth 167, (1996) 64.

    Article  ADS  Google Scholar 

  10. J. A. Burton, R. C. Prim, W. P. Slichter, J. Chem. Phys. 21 (1953) 1987.

    Article  ADS  Google Scholar 

  11. K. Shimamura, K. Sugiyama, S. Uda, T. Fukuda, Jpn. J. Appl. Phys. 34 (1995) 4894.

    Article  ADS  Google Scholar 

  12. V. G. Smith, W. A. Tiller, J. W. Rutter, Can. J. Phys. 33 (1955) 723.

    Article  ADS  Google Scholar 

  13. W. A. Tiller, K. A. Jackson, J. W. Rutter, B Chalmers, Acta Met. 1 (1953) 428.

    Article  Google Scholar 

  14. J. A. Neider, R. Mead, Computer J. 7 (1965) 308.

    Article  Google Scholar 

  15. H. Kodera, Jpn. J. Appl. Phys. 2 (1963) 212.

    Article  ADS  Google Scholar 

  16. V. N. Romanenko, Y. M. Smirnov, Inorg. Mater. 6 (1970) 1527.

    Google Scholar 

  17. H. Sasaki, Y. Anzai, X. M. Huang, K. Terashima, S. Kimura, Jpn. J. Appl. Phys. 34 (1995) 414.

    Article  ADS  Google Scholar 

  18. H. Sasaki, E. Tokizaki, X. M. Huang, T. Terashima, S. Kimura, Jpn. J. Appl. Phys. 34 (1995) 3432.

    Article  ADS  Google Scholar 

  19. H. Sasaki, E. Tokizaki, T. Terashima, S. Kimura, Jpn. J. Appl. Phys. 33 (1994) 3803.

    Article  ADS  Google Scholar 

  20. H. Sasaki, E. Tokizaki, T. Terashima, S. Kimura, Jpn. J. Appl. Phys. 33 (1994) 6078.

    Article  ADS  Google Scholar 

  21. C. T. Yen, W. A. Tiller, J. Crystal Growth 118 (1992) 259.

    Article  ADS  Google Scholar 

  22. A. G. Ostrogorsky, G. Müller, J. Crystal Growth 121 (1992) 587.

    Article  ADS  Google Scholar 

  23. J. P. Garandet, J. J. Favier, D. Camel, J. Crystal Growth 130 (1993) 113.

    Article  ADS  Google Scholar 

  24. J. P. Garandet, J. Crystal Growth 131 (1993) 431.

    Article  ADS  Google Scholar 

  25. S. Uda, W. A. Tiller, J. Crystal Growth 121, (1992) 93.

    Article  ADS  Google Scholar 

  26. S. Uda, W. A. Tiller, J. Crystal Growth 126, (1993) 396.

    Article  ADS  Google Scholar 

  27. V. A. D’yakov, D. P. Shumov, L. N. Rashkovich, A. L. Aleksandrovskii, Bulletin of the Academy of Sciences of the USSR. Physical Series 49 (1986) 117.

    Google Scholar 

  28. J. R. Owen, E. A. D. White, J. Crystal Growth 42 (1977) 499.

    Article  ADS  Google Scholar 

  29. Y. S. Luh, R. S. Feigelson, M. M. Fejer, R. L. Byer, J. Crystal Growth 78 (1986) 135.

    Article  ADS  Google Scholar 

  30. C. T. Yen, D. O. Nason, W. A. Tiller, J. Mater. Res. 1 (1992) 980.

    Article  ADS  Google Scholar 

  31. A. Feisst, A. Räuber, J. Crystal Growth 63 (1983) 337.

    Article  ADS  Google Scholar 

  32. A. Feisst, P. Koidl, Appl. Phys. Lett. 47 (1985) 1125.

    Article  ADS  Google Scholar 

  33. S. Uda, W. A. Tiller, J. Crystal Growth 121 (1992) 155.

    Article  ADS  Google Scholar 

  34. W. A. Tiller, S. Uda, J. Crystal Growth 129 (1993) 341.

    Article  ADS  Google Scholar 

  35. S. Uda, K. Shimamura, T. Fukuda, J. Crystal Growth 155 (1995) 229.

    Article  ADS  Google Scholar 

  36. S. Uda, J. Kon, J. Ichikawa, K. Inaba, K. Shimamura, T. Fukuda, J. Cryst. Growth 179 (1997) 567.

    Article  ADS  Google Scholar 

  37. P. F. Bordui, R. G. Norwood, C. D. Bird, G. D. Calvert, J. Crystal Growth 113, (1991) 61.

    Article  ADS  Google Scholar 

  38. R. S. Feigelson, W. L. Kway, R. K. Route, Optical Engineering 24, (1985) 1102.

    Google Scholar 

  39. A. Räuber, in Current Topics in Materials Science, E. Kaldis, Ed. ( North-Holland, Amsterdam, 1978 ), vol. 1, pp. 481.

    Google Scholar 

  40. W. A. Tiller, R. F. Sekerka, J. Appl. Phys. 35 (1964) 2726.

    Google Scholar 

  41. S. Uda, W. A. Tiller, J. Crystal Growth 152 (1995) 79.

    Article  ADS  Google Scholar 

  42. W. A. Tiller, S. Uda, J. Crystal Growth 129 (1993) 328.

    Article  ADS  Google Scholar 

  43. K. Imai, M. Imaeda, S. Uda, T. Taniuchi, T. Fukuda, J. Cryst. Growth 177 (1997) 7987.

    Article  Google Scholar 

  44. S. Uda, J. Kon, J. Ichikawa, K. Inaba, K. Shimamura, T. Fukuda, J. Crystal Growth, 182 (1997) 403.

    Article  ADS  Google Scholar 

  45. P. K. Gallagher, J. H. M. O’Bryan, J. Am. Ceram. Soc. 68 (1985) 147.

    Article  Google Scholar 

  46. H. M. O’Bryan, P. K. Gallagher, C. D. Brandle, J. Am. Ceram. Soc. 68 (1985) 493.

    Article  Google Scholar 

  47. R. Zuo and Z. Guo, J. Cryst. Growth 158 (1996) 377.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uda, S. (2004). Fundamentals of Growth Dynamics of the μ-Pulling Down Method. In: Fukuda, T., Rudolph, P., Uda, S. (eds) Fiber Crystal Growth from the Melt. Advances in Materials Research, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07214-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07214-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07364-9

  • Online ISBN: 978-3-662-07214-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics