Skip to main content

Optisches Pumpen und Doppelresonanz-Verfahren

  • Chapter
Laserspektroskopie
  • 78 Accesses

Zusammenfassung

Als optisches Pumpen bezeichnet man die selektive Bevölkerung oder Entleerung atomarer oder molekularer Niveaus durch Absorption von Photonen. Die daraus resultierende Änderung ΔN der Besetzungsdichte Ni dieser Niveaus führt zu einer merklichen Abweichung von der thermischen Gleichgewichtsbesetzung Ni0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. R.A. Bernheim: Optical Pumping, an Introduction (Benjamin, New York 1965)

    Google Scholar 

  2. B. Budick: Optical pumping methods in atomic spectroscopy. Adv. in At. Mol. Phys. 3, 73 (Academic, New York 1967)

    Article  ADS  Google Scholar 

  3. R.N. Zare: Optical pumping of molecules, in Int’l Colloquium on Doppler-Free Spectroscopic Methods for Simple Molecular Systems (CNRS, Paris 1974) p.29

    Google Scholar 

  4. M. Broyer, G. Gouedard, J.C. Lehmann, J. Vigue: Optical pumping of molecules. Adv. in At. Mol. Phys. 12, 164 (Academic, New York 1976)

    ADS  Google Scholar 

  5. G. zu Putlitz: Determination of nuclear moments with optical double resonance. Springer Tracts Mod. Phys. 37, 105 (Springer, Berlin, Heidelberg 1965)

    Article  ADS  Google Scholar 

  6. C. Cohen-Tannoudji: Optical pumping with lasers, in Atomic Physics IV, ed. by G. zu Putlitz, E.W. Weber, A. Winnacker (Plenum, New York 1975) p.589

    Chapter  Google Scholar 

  7. B. Decomps, M. Dumont, M. Ducloy: Linear and nonlinear phenomena in laser optical pumping, in Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976) p.284

    Google Scholar 

  8. R.N. Zare: Angular Momentum (Whiley, New York 1988)

    Google Scholar 

  9. K. Bergmann: State selection via optical methods, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, Oxford 1988) p.293

    Google Scholar 

  10. H.G. Weber, Ph. Brucat, W. Demtröder, R.N. Zare: Measurement of NO2 2 B2 -state g-values by optical radio frequency double-resonance. J. Mol. Spec-tros. 75, 58 (1979)

    Article  ADS  Google Scholar 

  11. I.I. Rabi: Zur Methode der Ablenkung von Molekularstrahlen. Z. Physik 54, 190 (1929)

    Article  ADS  Google Scholar 

  12. H. Kopfermann: Kernmomente (Akad. Verlagsanstalt, Frankfurt 1956)

    MATH  Google Scholar 

  13. N.F. Ramsay: Molecular Beams, 2nd edn. (Clarendom, Oxford 1989)

    Google Scholar 

  14. J.C. Zorn, T.C. English: Molecular beam electric resonance spectroscopy. Adv. At. Mol. Phys.9, 243 (Academic, New York 1973)

    Article  ADS  Google Scholar 

  15. D.D. Nelson, G.T. Fraser, K.I. Peterson, K. Zhao, W. Klemperer: The microwave spectrum of K=0 states of Ar-NH3. J. Chem. Phys. 85, 5512 (1986)

    Article  ADS  Google Scholar 

  16. S.D. Rosner, R.A. Holt, T.D. Gaily: Measurement of the zero-field hyperfine structure of a single vibration-rotation level of Na2 by a laser-fluorescence molecular-beam-resonance. Phys. Rev. Lett. 35, 785 (1975)

    Article  ADS  Google Scholar 

  17. S.D. Rosner, R.A. Holt, T.D. Gaily: Measurement of the zero-field hyperfine structure of a single vibration-rotation level of Na2 by a laser-fluorescence molecular-beam-resonance. Phys. Rev. Lett. 35, 785 (1975)

    Article  ADS  Google Scholar 

  18. A.G. Adam: Laser-fluorescence molecular-beam-resonance studies of Na2 line-shape due to HFS, PhD. Thesis, Univ. of Western Ontario, London, Ontario (1981)

    Google Scholar 

  19. W. Ertmer, B. Hofer: Zerofield hyperfine structure measurements of the meta-stable states 3d 24s 4F3/29/2 of *Sc using laser-fluorescence-atomic beam magnetic resonance technique. Z. Physik A 276, 9 (1976)

    Article  ADS  Google Scholar 

  20. J. Pembczynski, W. Ertmer, V. Johann, S. Penselin, P. Stinner: Measurement of the hyperfine structure of metastable atomic states of 55Mm, using the ABMR-LIRF-method. Z. Physik A 291, 207 (1979);

    Article  ADS  Google Scholar 

  21. J. Pembczynski, W. Ertmer, V. Johann, S. Penselin, P. Stinner: Measurement of the hyperfine structure of metastable atomic states of 55Mm, using the ABMR-LIRF-method. Z. Physik A294, 313 (1980)

    Article  ADS  Google Scholar 

  22. D.J.E. Ingram: Hochfrequenz- und Mikrowellenspektroskopie (Franzis, München 1976)

    Google Scholar 

  23. G.W. Chantry (ed.): Modern Aspects of Microwave Spectroscopy (Academic, London 1979)

    Google Scholar 

  24. K. Shimoda: Double resonance spectroscopy by means of a laser, in Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976) p. 197

    Chapter  Google Scholar 

  25. K. Shimoda: Infrared-microwave double resonance, in Laser Spectroscopy III, ed. by J.L. Hall, J. L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1975) p.279

    Google Scholar 

  26. H. Jones: Laser microwave-double-resonance and two-photon spectroscopy. Comments At. Mol. Phys. 8, 51 (1978)

    Google Scholar 

  27. F Tang, A. Olafson, J. O. Henningsen: A study of the methanol laser with a 500 MHz tunable CO2 laser. Appl.Phys. B 47, 47 (1988)

    Article  ADS  Google Scholar 

  28. R.W. Field, A.D. English, T. Tanaka, D.O. Harris, P.A. Jennings: Microwave-optical double resonance with a cw dye laser: BaO X1Σ and A1 Σ. J. Chem. Phys. 59, 2191 (1973)

    Article  ADS  Google Scholar 

  29. R.A. Gottscho, J. Brooke, Koffend, R.W. Field, J.R. :Lombardi:J.Chem. Phys. 68, 4110 (1978)

    Article  ADS  Google Scholar 

  30. J. M. Cook, G.W. Hills, R. F. Curl: Microwave-optical double resonance spectrum of NH2. J. Chem. Phys. 67. 1450 (1977)

    Article  ADS  Google Scholar 

  31. W.E. Ernst, S. Kindt: A molecular beam laser-microwave double resonance spectrometer for precise measurements of high temperature molecules. Appl. Phys. B 31, 79 (1983)

    Article  ADS  Google Scholar 

  32. W.J. Childs: Comments at. Mol. Phys. 13, 37 (1983)

    Google Scholar 

  33. W.E. Ernst, S. Kindt, T. Törring: Precise stark-effect measurements in the 2Σ-ground state of CaCl. Phys. Rev. Lett. 51, 979 (1983)

    Article  ADS  Google Scholar 

  34. G. Herzberg: Molecular Spectra and Molecular Structure I (van Nostrand Reinhold, New York 1956)

    Google Scholar 

  35. W. Demtröder, D. Eisel, H.J. Foth, G. Höning, M. Raab, H.J. Vedder, D. Zevgolis: Sub-doppler laser spectroscopy of small molecules. J. Mol. Structure 59, 291 (1980)

    Article  ADS  Google Scholar 

  36. F. Bylicki, G. Persch, E. Mehdizadeh, W. Demtröder: Saturation spectroscopy and OODR of NO2 in a collimated molecular beam. Chem. Phys. 135, 255 (1989)

    Article  Google Scholar 

  37. S.A. Edelstein, T.F. Gallagher: Rydberg atoms. Adv. At. Mol. Phys. 14, 365 (Academic, New York 1978)

    Article  ADS  Google Scholar 

  38. R.F. Stebbings, F.B. Dunnings: Rydberg States of Atoms and Molecules (Cambridge Univ. Press, Cambridge 1983)

    Google Scholar 

  39. J. Fricke: Rydbergatome-Riesenatome. Phys. in uns. Zeit 8, 56 (1977)

    Article  ADS  Google Scholar 

  40. H. Figger: Experimente an Rydberg-Atomen und Molekülen. Phys. in uns. Zeit 15, 2 (1984)

    Article  ADS  Google Scholar 

  41. J.A.C. Gallas, H. Walther, E. Werner: Simple formula for the ionization rate of Rydberg states in static electric fields. Phys. Rev. Lett. 49, 867 (1982)

    Article  ADS  Google Scholar 

  42. C.E. Theodosiou: Lifetimes of alkali-metal-atom Rydberg states. Phys. Rev. A 30, 2881 (1984)

    Article  ADS  Google Scholar 

  43. J. Neukamer, H. Rinneberg, K. Vietzke, A. König, H. Hieronymus, M. Kohl, H.J. Grabka: Spectroscopy of Rydberg atoms at n=500. Phys. Rev. Lett. 59, 2947 (1987)

    Article  ADS  Google Scholar 

  44. K.H. Weber, K. Niemax: Impact broadening of very high Rb Rydberg/levels by Xe. Z. Physik A 312, 339 (1983)

    Article  ADS  Google Scholar 

  45. R. Beigang, W. Makat, A. Timmermann, P.J. West: Hyperfine-induced n-mixing in high Rydberg states of 87Sr. Phys. Rev. Lett. 51, 771 (1983)

    Article  ADS  Google Scholar 

  46. T.F. Gallagher, W.E. Cooke: Interactions of blackbody radiation with atoms. Phys. Rev. Lett. 42, 835 (1979)

    Article  ADS  Google Scholar 

  47. L. Holberg, J.L. Hall: Measurement of the shift of Rydberg energy levels induced by blackbody radiation. Phys. Rev. Lett. 53, 230 (1984)

    Article  ADS  Google Scholar 

  48. H. Figger, G. Leuchs, R. Strauchinger, H. Walther: A photon detector for sub-millimeter wavelengths using Rydberg atoms. Opt. Commun. 33, 37 (1980) C.Fahre, S.Haroche: Spectroscopy of one-and two-electron Rydberg atoms, in [Ref.10.34, p.117]

    Article  ADS  Google Scholar 

  49. J. Boulmer, P. Camus, P. Pillet: Double Rydberg spectroscopy of the Barium atom. J. Opt. Soc. Am. B4, 805 (1987)

    Article  ADS  Google Scholar 

  50. I.C. Percival: Planetary atoms. Proc. Roy. Soc. London A 353, 289 (1977)

    Article  ADS  Google Scholar 

  51. J. Boulmer, P. Camus, P. Pillet: Autoionizing Double Rydberg States in Barium, ed. by H.B. Gilbody, W.R. Newell, F.H. Read, A.C. Smith, Electronic and Atomic Collisions (Elsevier, Amsterdam 1988)

    Google Scholar 

  52. D. Wintgen, H. Friedrich: Classical and quantum mechanical transition between regularity and irregularity. Phys. Rev. A 35, 1464 (1987)

    Article  ADS  Google Scholar 

  53. G. Wummer: Gibt es Chaos in der Quantenmechanik?. Phys. Blätter 45, 139 (Mai 1989)

    Article  Google Scholar 

  54. A. Holle, G. Wiebusch, J. Main, K.H. Welge, G. Zeller, G. Wunner, T. Ertl, H. Ruder: Hydrogenic Rydberg atoms in strong magnetic fields. Z. Physik D 5, 271 (1987)

    Article  ADS  Google Scholar 

  55. H. Rottke, K.H. Welge: Photoionization of the hydrogen atom near the ionization limit in strong electric fields. Phys. Rev. A 33, 301 (1986)

    Article  ADS  Google Scholar 

  56. 10.50 R.S. Freund: High Rydberg molecules, in [Ref.10.34, p.355]

    Google Scholar 

  57. D. Eisel, W. Demtröder, W. Müller, P. Botschwina: Autoionization spectra of Li2 and the X2Σ+g ground state of Li2 +. Chem. Phys. 80, 329 (1983)

    Article  Google Scholar 

  58. M. Schwarz, R. Duchowicz, W. Demtröder, Ch. Jungen: Autoionizing Rydberg states of Li2: analysis of electronic-rotational interactions. J. Chem. Phys. 89, 5460 (1988)

    Article  ADS  Google Scholar 

  59. Ch.H. Greene, Ch. Jungen: Molecular applications of quantum defect therapy, Adv. At. Mol. Phys. 21, 51 (Academic, New York 1985)

    Article  ADS  Google Scholar 

  60. S. Fredin, D. Gavyacq, M. Horani, Ch. Jungen, G. Lefevre, F. Masnou-Seeuws: S and d Rydberg series of NO probed by double resonance multiphoton ionization. Mol. Phys. 60, 825 (1987)

    Article  ADS  Google Scholar 

  61. P. Goy, M. Bordas, M. Broyer, P. Labastie, B.Tribellet: Microwave transitions between molecular Rydberg states. Chem. Phys. Lett. 120, 1 (1985)

    Article  ADS  Google Scholar 

  62. P. Filipovicz, P. Meystere, G. Rempe, H. Walther: Rydberg atoms, a tasting ground for quantum electrodynamics. Opt. Acta 32, 1105 (1985)

    ADS  Google Scholar 

  63. C.J. Latimer: Recent experiments involving highly excited atoms. Contemp. Phys. 20, 631 (1979)

    Article  ADS  Google Scholar 

  64. J.C. Gallas. G. Leuchs, H. Walther, H. Figger: Rydberg atoms: high resolution spectroscopy and advances. At. Mol. Phys. 20, 414 (1985)

    ADS  Google Scholar 

  65. V.S. Letokhov, V.P. Chebotajev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977) Chap.5

    Book  Google Scholar 

  66. Th. Hänsch, P. Toschek: Z. Phys. 236, 213 (1970)

    Article  ADS  Google Scholar 

  67. H. Weickenmeier, V. Diemer, M. Wahl, M. Raab, W. Demtröder, W. Müller: Accurate ground state potential of Cs2 up to the dissociation limit. J. Chem. Phys. 82, 5354 (1985)

    Article  ADS  Google Scholar 

  68. H. Weickemeier, V. Diemer, W. Demtröder, M. Broyer: Hyperfine interaction between the singlet and triplet ground states of Cs2. Chem. Phys. Lett. 124, 470 (1986)

    Article  ADS  Google Scholar 

  69. R. Teets, R. Feinberg, T.W. Hänsch, A.L. Schawlow: Simplification of spectra by polarization labelling. Phys. Rev. Lett. 37, 683 (1976)

    Article  ADS  Google Scholar 

  70. N.W. Carlson, A.J. Taylor, K.M. Jones, A.L. Schawlow: Two step polarization-labelling spectroscopy of excited states of Na2. Phys. Rev. A24, 822 (1981)

    Article  ADS  Google Scholar 

  71. B. Hemmerling, R. Bumbach, W. Demtröder, N. Spies: Polarization labelling spectroscopy of molecular Li2 Rydberg states. Z. Physik D 5, 165 (1987)

    Article  ADS  Google Scholar 

  72. W.E. Ernst: Microwaveoptical polarization spectroscopy of the X2S state of SrF. Appl. Phys. B30, 2378 (1983)

    Google Scholar 

  73. W.E. Ernst, T. Törring: Hyperfine Structure in the X2 S state of CaCl measured with microwave optical polarization spectroscopy. Phys. Rev. A 27, 875 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (1991). Optisches Pumpen und Doppelresonanz-Verfahren. In: Laserspektroskopie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08270-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08270-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08271-3

  • Online ISBN: 978-3-662-08270-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics